
Beginning
PyQt

A Hands-on Approach to
GUI Programming with PyQt6
—
Second Edition
—
Joshua M Willman

Beginning PyQt
A Hands-on Approach to GUI

Programming with PyQt6

Second Edition

Joshua M Willman

Beginning PyQt: A Hands-on Approach to GUI Programming with PyQt6

ISBN-13 (pbk): 978-1-4842-7998-4 ISBN-13 (electronic): 978-1-4842-7999-1
https://doi.org/10.1007/978-1-4842-7999-1

Copyright © 2022 by Joshua M Willman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights. The use of general descriptive names, registered names, trademarks, service marks, etc. in
this publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at https://github.com/Apress/Beginning-PyQt--
second-edition. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joshua M Willman
Sunnyvale, CA, USA

https://doi.org/10.1007/978-1-4842-7999-1

To my daughter, Kalani.

v

Chapter 1: Getting Started with PyQt�� 1

The PyQt Framework ��� 1

Why Choose PyQt? ��� 2

PyQt5 vs� PyQt6 ��� 3

Installing Python 3 and PyQt6 ��� 3

Checking Your Version of Python ��� 4

Installing PyQt6�� 4

Introduction to User Interfaces ��� 5

What Is a Graphical User Interface? �� 5

Concepts for Creating Good Interface Design �� 6

Creating Your First GUI: An Empty Window �� 7

Explanation for Creating an Empty Window �� 8

Summary��� 11

Chapter 2: Building a Simple GUI �� 13

The QLabel Widget �� 13

Explanation for Using QLabel ��� 14

Project 2�1 – User Profile GUI �� 18

Designing the User Profile GUI ��� 19

Explanation for the User Profile GUI �� 20

Summary��� 24

Table of Contents

About the Author ��� xiii

About the Technical Reviewers ���xv

Acknowledgments ���xvii

Introduction ��xix

vi

Chapter 3: Adding More Functionality with Widgets �� 25

Event Handlers and Signals and Slots �� 25

The QPushButton Widget �� 26

Explanation for Using QPushButton ��� 27

The QLineEdit Widget �� 31

Explanation for Using QLineEdit �� 31

The QCheckBox Widget ��� 34

Explanation for Using QCheckBox ��� 35

The QMessageBox Dialog ��� 38

Windows vs� Dialogs�� 39

Explanation for Using QMessageBox ��� 39

Project 3�1 – Login GUI and Registration Dialog ��� 44

Designing the Login GUI and Registration Dialog �� 46

Explanation for Creating the Login GUI �� 47

Explanation for Creating the Main Window ��� 55

Explanation for Creating the Registration Dialog ��� 56

Summary��� 61

Chapter 4: Learning About Layout Management �� 63

Using Layout Managers in PyQt �� 64

Absolute Positioning ��� 65

Horizontal and Vertical Layouts with Box Layouts �� 66

Explanation for QHBoxLayout �� 66

Explanation for QVBoxLayout ��� 69

Creating Nested Layouts ��� 73

Explanation for Nested Layouts ��� 74

Arranging Widgets in Grids with QGridLayout ��� 79

Explanation for QGridLayout �� 80

Building Forms with QFormLayout �� 87

Explanation for QFormLayout �� 88

Managing Pages with QStackedLayout ��� 95

Explanation for QStackedLayout �� 97

Table of ConTenTs

vii

Additional Tips for Managing Space ��� 101

Explanation for Managing Space ��� 102

Summary��� 104

Chapter 5: Menus, Toolbars, and More ��� 105

Common Practices for Creating Menus �� 106

Creating a Simple Menu Bar ��� 106

Explanation for Creating a Menu Bar ��� 107

Using Icons and the QIcon Class ��� 111

Explanation for Using Icons ��� 112

Setting the Central Widget ��� 115

Built-in Dialog Classes in PyQt �� 116

The QFileDialog Class �� 116

The QInputDialog Class �� 117

The QFontDialog Class ��� 118

The QColorDialog Class ��� 119

The About QMessageBox ��� 121

Project 5�1 – Rich Text Notepad GUI �� 122

Designing the Rich Text Notepad GUI �� 123

Explanation for the Rich Text Notepad GUI �� 123

Expanding the Features in a Main Window ��� 133

Explanation for Expanding the Features �� 134

Project 5�2 – Simple Photo Editor GUI ��� 142

Designing the Photo Editor GUI �� 143

Explanation for the Photo Editor GUI�� 143

Summary��� 159

Chapter 6: Styling Your GUIs ��� 161

What Are Styles in PyQt? ��� 161

Changing the Default Style �� 162

Modifying Widget Appearances ��� 163

Using HTML to Change the Look of Text �� 164

Using Qt Style Sheets to Change the Look of Widgets �� 167

Table of ConTenTs

viii

Explanation for Using “Inline” Qt Style Sheets �� 169

Explanation for Using “Embedded” Qt Style Sheets �� 172

Organizing Widgets with Containers and Tabs �� 175

The QRadioButton Widget �� 176

The QGroupBox Class �� 176

The QTabWidget Class ��� 177

Explanation for Using Containers and Tabs ��� 177

Project 6�1 – Food Ordering GUI �� 182

Design the Food Ordering GUI ��� 184

Explanation for the Food Ordering GUI �� 185

CSS Properties Reference ��� 198

Summary��� 199

Chapter 7: Handling Events in PyQt �� 201

Event Handling in PyQt �� 201

Using Signals and Slots ��� 202

Using Event Handlers to Handle Events ��� 202

Difference Between Signals and Slots and Event Handlers �� 203

Handling Key Events ��� 203

Explanation for Handling Key Events ��� 204

Handling Mouse Events��� 205

Explanation for Handling Mouse Events �� 207

Creating Custom Signals ��� 211

Explanation for Creating Custom Signals �� 212

Summary��� 216

Chapter 8: Creating GUIs with Qt Designer ��� 217

Getting Started with Qt Designer �� 218

Installing Qt Designer �� 218

Exploring Qt Designer’s User Interface �� 219

Qt Designer’s Editing Modes ��� 225

Creating an Application in Qt Designer ��� 226

Project 8�1 – Keypad GUI �� 227

Table of ConTenTs

ix

Explanation for the Keypad GUI ��� 228

Extra Tips for Using Qt Designer ��� 254

Setting Up Main Windows and Menus ��� 254

Displaying Images in Qt Designer �� 257

Adding Style Sheets in Qt Designer ��� 257

Summary��� 258

Chapter 9: Working with the Clipboard �� 259

The QClipboard Class �� 259

Explanation for Using QClipboard �� 261

Project 9�1 – Sticky Notes GUI �� 265

Explanation for the Sticky Notes GUI ��� 267

Summary��� 272

Chapter 10: Presenting Data in PyQt �� 273

Quickly Handling Data in PyQt��� 273

The QListWidget Class �� 274

Explanation for Using QListWidget �� 275

Drag and Drop in PyQt ��� 279

Explanation for Drag and Drop �� 280

The QTableWidget Class �� 283

Explanation for Using QTableWidget �� 284

The QTreeWidget Class ��� 293

Explanation for Using QTreeWidget ��� 294

Summary��� 297

Chapter 11: Graphics and Animation in PyQt ��� 299

Introduction to the QPainter Class �� 300

Explanation for Using the QPainter Class �� 301

Project 11�1 – Painter GUI ��� 314

Explanation for the Painter GUI ��� 315

Creating the Canvas Class ��� 316

Creating the Painter GUI’s MainWindow Class �� 322

Table of ConTenTs

x

Animating Scenes with QPropertyAnimation �� 327

Explanation for Animating Scenes �� 329

Introduction to Animating Widgets �� 334

Explanation for Animating Widgets �� 335

Summary��� 340

Chapter 12: Creating Custom Widgets �� 341

Project 12�1 – RGB Slider Custom Widget ��� 341

PyQt’s Image Handling Classes ��� 343

The QSlider Widget �� 344

Explanation for the RGB Slider Widget �� 345

RGB Slider Demo ��� 356

Explanation for the RGB Slider Demo �� 357

Summary��� 358

Chapter 13: Working with Qt Quick �� 359

Outlining QtQuick and QML ��� 360

Elements in QtQuick �� 362

Introduction to the QML Language and Syntax ��� 363

Building and Running QML Components ��� 366

Creating and Loading QML Components ��� 367

Creating Reusable Components �� 373

Layout Handling in QML ��� 376

Building and Loading QML Windows ��� 380

Using Transformations to Animate Objects ��� 387

Explanation for Simple Transformations �� 388

Explanation for Using Transformations to Animate Objects ��� 390

Summary��� 394

Chapter 14: Introduction to Handling Databases �� 395

Thinking About Data �� 395

Introduction to Model/View Programming �� 396

Table of ConTenTs

xi

The Components of the Model/View Architecture ��� 396

PyQt’s Model/View Classes ��� 398

Explanation for Introduction to Model/View �� 400

Working with SQL Databases in PyQt �� 404

What Is SQL? ��� 404

Project 14�1 – Account Management GUI ��� 407

Explanation for Working with the QtSql Module �� 409

Explanation for Querying a Database with QSqlQuery �� 416

Working with the QSqlTableModel Class ��� 419

Working with the QSqlRelationalTableModel Class ��� 423

Explanation for the Account Management GUI �� 428

Summary��� 436

Chapter 15: Managing Threads �� 437

Introduction to Threading �� 437

Threading in PyQt �� 438

Methods for Processing Long Events in PyQt �� 439

Project 15�1 – File Renaming GUI ��� 440

The QProgressBar Widget �� 441

Explanation for File Renaming GUI �� 441

Summary��� 450

Chapter 16: Extra Projects �� 451

Project 16�1 – Directory Viewer GUI �� 452

Explanation for the Directory Viewer GUI ��� 453

Project 16�2 – Camera GUI �� 456

Explanation for the Camera GUI ��� 458

Project 16�3 – Simple Clock GUI ��� 464

Explanation for the Clock GUI �� 465

Project 16�4 – Calendar GUI �� 467

Explanation for the Calendar GUI ��� 468

Project 16�5 – Hangman GUI ��� 473

Explanation for the Hangman GUI �� 475

Table of ConTenTs

xii

Project 16�6 – Web Browser GUI ��� 484

Explanation for Web Browser GUI �� 486

Project 16�7 – Tri-state QComboBox ��� 497

Explanation for the Tri-state QComboBox ��� 498

Summary��� 501

 Appendix: Reference Guide for PyQt6 ��� 503

 Selected PyQt6 Modules ��� 503

 Selected PyQt Classes �� 504

 Classes for Building a GUI Window �� 505

QPainter ��� 509

Layout Managers ��� 511

Button Widgets �� 512

Input Widgets ��� 514

Display Widgets ��� 522

Item Views ��� 524

Container Widgets ��� 526

 QtQuick and QML �� 529

 Qt Style Sheets �� 529

 Qt Namespace ��� 532

 Summary��� 532

Index ��� 533

Table of ConTenTs

xiii

About the Author

Joshua Willman is a software engineer with more than

12 years of experience developing applications in mainly

Python and C++. His career has allowed him to participate in

many different fields, from robotics, machine learning, and

computer vision to UI development, game development,

and more. His first experience with PyQt was building an

interface for simplifying the labeling process of datasets for

machine learning. Ever since then, he’s been hooked!

In recent years, his passion for programming and all

things visual has allowed him to participate in numerous

projects. These include designing educational courses for mobile robotics and computer

vision using Arduino and Raspberry Pi, building GUI applications, and working as a solo

indie game developer. He currently works as a robotics engineer, a technical writer, and

a content creator (learning web development in his spare time in order to build his own

platform, redhuli.io). When he’s not working, he enjoys tinkering on robotics projects

and spending time with his wonderful wife and daughter.

He is also the author of two books with Apress:

• Beginning PyQt: A Hands-on Approach to GUI Programming (1st

Edition)

• Modern PyQt: Create GUI Applications for Project Management,

Computer Vision, and Data Analysis

xv

About the Technical Reviewers

Vikas Kumar has more than seven years of combined

experiences in avionics, aerospace, automotive, and

healthcare industries in R&D and software development

activities. He has been programming and developing

desktop applications with C++, Qt, PyQt/PySide, Python,

Java, and SQL since the beginning. He holds a Bachelor of

Technology in Computer Science and Engineering from Biju

Patnaik University of Technology, Odisha, India.

He has worked with various Indian defense clients for

the development of avionics test suite for the testing of components of various military

aircrafts. He has worked with Airbus as a client for the development of various software

responsible for structural and computational analysis of various commercial aircrafts.

He has worked with Mercedes-Benz for the development of software responsible for data

analysis, simulation, modeling, and validation of high-voltage electric battery used in

Mercedes-Benz electric vehicles.

His technical skills include C++, Qt, PyQt/PySide, Python, Java, MySQL, and desktop

application development in Linux and Windows.

He currently works as Senior Software Engineer with GE Healthcare India for

developing host software for MRI scanners.

Saumitra Jagdale is the founder of Open Cloudware and

Global AI Ambassador focusing on the current trends in

technology. He is a recognized technical author for various

established media houses like OpenSystems Media, CNX

Software, AspenCore, Electronics-Lab, and IoT Tech Trends.

Additionally, he is a Senior Engineer – Cloud Services

and Software at L&T Infotech with expertise in the field of

CRM and ERP applications. Being an open source Python

developer, he also leads the TensorFlow Community

India for promoting deep learning methodologies in the

community.

xvii

Acknowledgments

I am beyond grateful to Divya Modi, Celestin Suresh John, and the wonderful team at

Apress for granting me the opportunity to write the second edition of this book.

My deepest appreciation goes to Divya for being there every step along the way.

A special thanks to Andrea Casadei whose inquiries greatly helped to improve this

edition.

An immense thanks to the Python, PyQt, and Qt communities. I would also really

like to thank Phil Thompson, the creator of PyQt.

I owe an enormous amount of gratitude to Richard Bronosky for giving me a chance

when I needed it the most.

Ashish Naik, thank you for all of the support you provided my family and me from

the very beginning.

Thanks to my mother, Valorie, and my sisters, Teesha and Jazzmin, for the support

you have always given me.

I am deeply thankful to my wife, Evelyn Ye, whose continued patience with me

makes these books possible.

To Kalani, you continue to be my motivation and inspiration.

Once again, thank you to the readers. I truly hope that ideas found within this book

will fuel your creativity and benefit you in some way.

xix

Introduction

With new PyQt versions come new tools to play with. The latest edition aims to explore

some of those ideas while still being aimed toward beginners. You will explore how to

use the Python programming language, along with the PyQt6 toolkit, to create graphical

user interfaces (GUIs).

Just getting started is more important than anything else. Coding a GUI can be

considered a combination of programming and graphic design skills. An awareness of a

user’s needs is also crucial for better usability and graphical appearance. Programming

a GUI is often a matter of selecting the right component, referred to as widgets in PyQt,

to complete a task and then applying the necessary programming skills to make them

operational.

One goal is to balance the theory behind good design practices with more hands-on,

learn-as-you-go style coding examples. New concepts and PyQt classes are introduced in

each chapter, and later chapters sometimes build upon previous ones.

 Who Should Read This Book
This book is targeted to Python developers who are looking to begin creating graphical

user interfaces and want to utilize the latest version of PyQt to get started. Having prior

knowledge of PyQt or other Python GUI toolkits is not necessary to begin using this

book. It is, however, recommended that you understand the fundamentals of Python and

Python syntax and are comfortable using Object-Oriented Programming (OOP).

 How This Book Is Organized
The latest edition of Beginning PyQt begins by introducing you to the basic ideas behind

GUI development. Chapter 1 will get you on your way to installing and understanding

how to use the latest version of PyQt.

xx

Chapters 2 and 3 teach how to add widgets to your applications, thereby adding

more and more functionality to your projects. Both chapters introduce different widgets,

such as QLabel, QCheckBox, and QLineEdit, and give examples and ideas for using

them. Chapter 3 will also introduce you to PyQt’s signals and slots mechanism for

handling events.

Chapter 4 focuses on layout managers for arranging widgets.

After learning about different widgets and layouts, Chapter 5 guides you through

examples that help you to create classical GUIs with menus and toolbars.

Chapter 6 presents style sheets for altering the look of your applications.

Chapter 7 discusses how to handle events that occur in a GUI, such as a user

clicking on the mouse. You’ll also discover how to create your own signals and how to

reimplement event handlers.

Since Qt also includes its own graphical user interface to help you create GUIs, we

will take a look at how to use Qt Designer in Chapter 8.

From there, we’ll start learning more advanced concepts.

Chapter 9 introduces you to using the clipboard to copy and paste information

between applications.

Chapter 10 shows how to handle data using PyQt’s item-based convenience classes.

You’ll also find out how to add basic drag-and-drop functionality to widgets.

Chapter 11 introduces you to painting, graphics, and animation.

Customization is important in PyQt. Chapter 12 shows you how to build and use

your own custom widgets.

Chapter 13 talks about Qt Quick for building fluid and dynamic applications.

Chapter 14 shows how to use build user interfaces that handle data with SQL

databases and PyQt’s Model/View architecture.

Chapter 15 discusses multithreaded programming to avoid your applications from

freezing.

Chapter 16 contains extra example projects to help you continue to gain extra

practice and insight into creating applications with PyQt.

The Appendix includes additional information about different PyQt modules and

classes. An additional coding example can also be found in the Appendix.

InTroduCTIon

xxi

 Understanding the Structure and Code of
the Chapters
Code for the latest edition is generally broken apart into smaller pieces (unless

the program is already a short example). This makes the code easier to digest and

understand and also prevents users from code dumps (copying and pasting entire

sections). You can always refer to the GitHub repository (link found in the “Links to the

Source Code” section) to see the code examples in their entirety.

Also, be sure to pay close attention to the listing titles above each piece of code

when following along. They give hints about each section as well as help you know what

code example you are viewing. For example, Chapter 2 introduces labels. The code for

explaining how to use labels is broken into two parts, Listing 1 and Listing 2. The first

listing’s header appears like the following lines:

Listing 1. Setting up the main window to show how to use QLabel widgets

labels.py

The second part of the application is listed as

Listing 2. The setUpMainWindow() method for displaying text and image labels

labels.py

If a code snippet does not contain a listing number, then that code provides

additional information but is not located in any of the files.

In addition, where necessary, important differences between PyQt5 and PyQt6 are

pointed out in the text.

Another important note is that PyQt is designed to be cross-platform. No world is

perfect though, and sometimes, additional explanations are given for developers to get

their code running on Windows, macOS, or Linux (Ubuntu). Be sure to take a look at the

comments or notes for clarity when running an application.

Finally, as you are reading along, keywords use bold font. File names, Python and

PyQt module and class names, and bits of the code that are mentioned in the text are

displayed using a different font, for example, QPushButton.

InTroduCTIon

xxii

 Links to the Source Code
The source code for Beginning PyQt: A Hands-on Approach to GUI Programming with

PyQt6 can be found on GitHub at https://github.com/Apress/Beginning-PyQt--

second-edition.

 Reader Feedback
Your feedback, questions, and ideas are always welcome. If you have any questions

about this book, PyQt version 5 or 6, or GUI development or would just like to leave a

comment, you can always find me at redhuli.comments@gmail.com.

InTroduCTIon

https://github.com/Apress/Beginning-PyQt--second-edition
https://github.com/Apress/Beginning-PyQt--second-edition

1
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_1

CHAPTER 1

Getting Started with PyQt
Hello! Welcome to Beginning PyQt: A Hands-on Approach to GUI Programming. You are

probably here because you would like to learn how to build applications and need some

help getting started. Maybe you have a personal program you need to build, or perhaps

you would like to build a custom software application for others to use. Whatever your

reason may be, you’ll need to figure out where is the best place to start.

The goal of this book is to take a practical approach to coding user interfaces.

You’ll be able to follow along and code numerous examples, both simple and complex.

You’ll also gain knowledge through visualization and practice that show how to use

fundamental concepts you need to build your own applications. In many cases, those

concepts will then be applied to larger projects.

In this chapter, you will

• Learn about the PyQt toolkit for creating user interfaces

• Set up Python 3 and download the latest version of PyQt6

• Consider some fundamental concepts for building user-friendly

interfaces

• Create your first application with PyQt

Let’s begin this journey by finding out more about PyQt.

 The PyQt Framework
The PyQt toolkit is a set of Python bindings for the Qt cross-platform widget toolkit and

application framework. What does that mean?

First, Qt is used for the development of user interfaces and other applications and is

being developed by The Qt Company. The framework is significant because it can run

on numerous software and hardware systems such as Windows, macOS, Linux, Android,

or embedded systems with little to no change to the underlying code and is still able to

https://doi.org/10.1007/978-1-4842-7999-1_1

2

maintain capabilities and speed of the system on which it is being run. So in general,

you’ll be able to make some amazing cross-platform applications without having to

worry about the user’s platform.

Second, this all means that PyQt combines all the advantages of the Qt C++

cross-platform widget toolkit with Python, the powerful and simple, cross-platform

interpreted language. It’s worth noting that while PyQt has its own documentation, the

Qt documentation tends to be more complete. If you have never used C++ before, this

can seem like a daunting task. We’ll discuss this topic a little further in this chapter’s first

application.

For more information about Qt, have a look at www.qt.io.

For more information about PyQt, check out www.riverbankcomputing.com/news.

 Why Choose PyQt?
PyQt is capable of more than just creating graphical interfaces, as it also has access

to Qt classes that cover mechanics such as XML handling, SQL databases, network

communication, graphics and animations, and many other technologies. Take the

capabilities of Qt and combine them with the number of extension modules that Python

provides and you have the ability to create new applications that can build upon these

preexisting libraries.

PyQt also includes Qt Designer, which allows for anyone to assemble a GUI much

faster using a simple drag-and-drop graphical interface designer. Qt Designer is

discussed in detail in Chapter 8.

Using PyQt’s signal and slot mechanism, you can create an extremely interactive

interface and customize how different PyQt components interact. This will be covered in

more detail in Chapters 3 and 7.

There are, of course, other toolkits available for creating applications with GUIs using

Python, such as Tkinter, wxPython, and PySide, and they all have their own advantages.

For example, Tkinter comes bundled with Python, meaning that you can find an

abundance of helpful resources by doing a quick search on the Internet. PySide is the

Python binding of Qt managed by The Qt Company itself. Despite this, PyQt still has a

larger following thanks to its age and awesome community of developers.

It is worth noting that if you choose to use PyQt to create commercial applications,

you will need to get a license. Applications created in this book will leverage the GNU
General Public License (GPL).

Chapter 1 GettinG Started with pyQt

http://www.qt.io
https://www.riverbankcomputing.com/news

3

Ultimately, it all comes down to choosing the toolkit that works the best for your

project.

 PyQt5 vs. PyQt6
The latest version of Qt has brought more focus on 2D and 3D capabilities. There are also

quite a few changes in the latest version of PyQt. Since this book’s aim is to introduce the

fundamentals of developing applications with PyQt, we will take a look at the changes

that will impact you the most at this stage of your journey:

• As you dive more into PyQt, you’ll definitely use enums, flags, and

other identifiers in the Qt Namespace. They are useful for setting

the properties of the different classes in PyQt. What’s important

to understand now is that the fully qualified names are now used

for these items rather than the shorthand ones used in PyQt5. For

example, PyQt5 used Qt.AlignCenter to center text, but PyQt6 uses

the full name, Qt.AlignmentFlag.Center. You will see numerous

examples of this throughout the book, and we’ll discuss this more in

later chapters.

• Some classes and methods have been deprecated, such as

QDesktopWidget, while others have been moved, such as the QAction

class is now located in the QtGui module.

• The exec() method is now used in PyQt6 to start the event loop of

your application rather than exec_().

This is not an exhaustive list, and you will find out more about these and other topics

as you follow along. If you are interested to see more of the new changes in PyQt6, have a

look at www.riverbankcomputing.com/static/Docs/PyQt6/pyqt5_differences.html.

 Installing Python 3 and PyQt6
So that all readers are on the same page, let’s begin by installing or updating your version

of Python.

Chapter 1 GettinG Started with pyQt

http://www.riverbankcomputing.com/static/Docs/PyQt6/pyqt5_differences.html

4

 Checking Your Version of Python
In order to use PyQt, you will first need to have Python 3.7 or higher installed.

Note when pyQt6 was first released, it was compatible with python 3.6.1 or
higher. however, that was scheduled to be discontinued at some point in the future.
you should have python 3.7 or higher on your system just to be on the safe side.

To check which version of Python 3 you have installed on your system, open your

system’s shell, and run the command

$ python3 --version

Change python3 to python on Windows. This will return your system’s Python 3

version. If yours happens to be lower than Python 3.7 or you don’t have Python installed,

then have a look at www.python.org/downloads/ to get the latest version.

Tip For those readers that might not want to remove their current version of
python and would like to manage multiple python versions on their system, have a
look at the python version management tool, pyenv.

 Installing PyQt6
Since PyQt does not come included with your Python installation, the next step is to

use pip to install the PyQt6 package from the Python Package Index (PyPI). To create

the bindings between Python and C++, the SIP binding generator tool is used. When

downloading PyQt6 from PyPI, the sip module will automatically be downloaded too.

To install PyQt6, enter the following command into your shell:

$ pip3 install PyQt6

If you are using Windows, you will probably need to change pip3 to pip. To make

sure PyQt is downloaded properly, open up the Python 3 interpreter by entering python3

(python for Windows) into the command line. Then enter the following command:

>>> import PyQt6

Chapter 1 GettinG Started with pyQt

http://www.python.org/downloads/

5

Tip throughout the course of this book, you’ll create a number of pyQt GUis. For
those readers who are interested in managing their different pyQt projects and
their dependencies, have a look at using virtual environments and the python
module, venv.

If no errors are returned, we can now move on and learn a little bit more about user

interfaces.

 Introduction to User Interfaces
The user interface (UI) has become a key part of our everyday lives, becoming the

intermediary between us and our ever-growing number of machines. A UI is designed

to facilitate in human-computer interaction. The human needs to operate and control

the machine to serve some purpose; meanwhile, the machine needs to simultaneously

provide feedback and a means to interact with it in order to aid the human’s decision-

making process. UIs are everywhere, from the mobile applications on our phones to web

browsers, to heavy machinery controls, and even on the appliances in our kitchens. Of

course, the ways in which we interact with technology is not merely limited to our hands,

as many UIs also allow interaction with our other sensory organs.

A good UI is tasked with helping a person produce a desired result while also

allowing for easier, more efficient, and more friendly operation of a machine. Think

about the photo editing apps on your phone. Editing the size, color, or exposure is

practically effortless as you slide your fingers across the screen and watch the images

change almost instantly. The user provides minimal input to achieve the desired output.

 What Is a Graphical User Interface?
For this book, we will be focusing on creating desktop graphical user interfaces (GUI)

that take advantage of a computer’s graphics capabilities to create visual applications.

Decades ago, users would have to use the command line and text commands to interact

with the computer. Tasks such as opening, deleting and moving files, and searching

through directories were all done by typing in certain commands. However, these were

not very user-friendly or simple-to-use interfaces for the general public. So GUIs were

Chapter 1 GettinG Started with pyQt

6

created to allow users to interact with electronic devices using graphical controls, rather

than command-line interfaces.

These graphical control elements, or widgets, such as buttons, menus, and windows,

make such tasks effortless. Interaction now becomes as simple as moving your mouse or

touching the screen depending upon your device and clicking on the widget.

 Concepts for Creating Good Interface Design
This, first and foremost, is a technical book written to help those of you who want to

learn how to create and code your own GUI with PyQt and Python. That being said,

if you plan to design any kind of UI that other people will use, then you are no longer

creating a UI just to solve your own problems. You must also begin to consider other

users of the application as well. Think about what you want them to accomplish, or how

the application can help them. Sometimes, when we are trying to solve a problem, we get

so caught up in trying to create a product that we forget about the people who actually

have to interact with them.

The following is a list of concepts to consider when designing your own UI. They are

not set rules and by no means a complete list, but rather ideas that you should consider

when designing your own applications.

 1. Clarity – Using clear language, hierarchy, and flow with visual

elements to avoid ambiguity. One of the ways this can be achieved

is by considering visual importance to the human eye, laying out

widgets with bigger sizes, darker colors, etc., in such a manner

that we can visually understand the UI.

 2. Conciseness – Simplifying the layout to include only what the user

needs to see or interact with at a given time in order to be brief,

but also comprehensive. Adding more labels or buttons in your

window just to give the user more options is not always better.

 3. Consistency – Design the UI so that there is consistency across the

application. This helps users to recognize patterns in the visual

elements and layout and can be seen in typography that improves

the navigation and readability of the application, image styles, or

even color schemes.

Chapter 1 GettinG Started with pyQt

7

 4. Efficiency – Utilizing good design and shortcuts to help the user

improve productivity. If a task can be accomplished in two steps,

why design your GUI so that the work has to be completed in five?

 5. Familiarity – Consider elements that users normally see in

other UIs and how they would expect them to perform in your

applications. For example, think about how weird it would be to

have to enter your login information, only to find the password

entry field is above the username. It is not wrong, but now you are

unnecessarily making users think about their actions and slowing

them down.

 6. Responsive – Give the user feedback, for example, a toggle that

changes color to “on” or “off,” a small message to notify the user if

their input is correct or incorrect, or even a sound effect to verify a

completed action. The user should never be left wondering if their

action was successful or not.

 Creating Your First GUI: An Empty Window
A GUI application generally consists of a main window and possibly one or more

dialog boxes. The main window is where the user will spend most of their time when

using your application and can consist of a menu bar, a status bar, and other widgets.

Dialog boxes typically are made up of text, maybe one or more widgets for collecting

information, and buttons. They appear to the user when necessary to communicate

information and prompt them for input. An alert window that pops up asking you if you

want to save changes to your document is an example of a dialog. Dialog boxes will be

covered further in Chapter 3.

For your first project, seen in Figure 1-1, we’ll consider

• How to create an empty window in PyQt6

• The basic classes and modules needed to set up your GUI

• How to modify the main window’s size and title

Chapter 1 GettinG Started with pyQt

8

Figure 1-1. Empty window created with PyQt6

This application will serve as the foundation for all other programs found in

this book.

 Explanation for Creating an Empty Window
The code found in Listing 1-1 is all you need to create a window in PyQt6. Examples

throughout this book will take advantage of object-oriented programming (OOP),

a programming paradigm that focuses on using classes to create instances of those

classes, or objects, with their own properties and behaviors and modeling the

relationships between other objects.

Listing 1-1. Creating an empty window in PyQt

basic_window.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QWidget

class EmptyWindow(QWidget):

 def __init__(self):

 """ Constructor for Empty Window Class """

 super().__init__()

 self.initializeUI()

Chapter 1 GettinG Started with pyQt

9

 def initializeUI(self):

 """Set up the application."""

 self.setGeometry(200, 100, 400, 300)

 self.setWindowTitle("Empty Window in PyQt")

 self.show() # Display the window on the screen

Run the program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = EmptyWindow()

 sys.exit(app.exec())

Your initial window should look similar to the one in Figure 1-1 depending upon

your operating system.

Walking through the code, we first start by importing the sys and PyQt6 modules that

we need to create a window. The sys module can be used in PyQt to pass command line

arguments to our applications and to close them.

The QtWidgets module provides the widget classes that you will need to create

desktop-style GUIs. From the QtWidgets module, we import two classes: QApplication

and QWidget. You only need to create a single instance of the QApplication class, no

matter how many windows or dialog boxes exist in an application. QApplication is

responsible for managing the application’s main event loop and widget initialization and

finalization. The main event loop is where user interactions in the GUI window, such as

clicking on a button, are managed. Take a quick look at

 app = QApplication(sys.argv)

QApplication takes as an argument sys.argv. You can also pass in an empty list if

you know that your program will not be taking any command line arguments using

 app = QApplication([])

Tip always create your GUi’s QApplication object before any other object
belonging to the GUi, including the main window. this concept is demonstrated in
Listing 1-2.

Chapter 1 GettinG Started with pyQt

10

Next, we create a window object that inherits from the class we created, EmptyWindow.

Our class actually inherits from QWidget, which is the base class for which all other user

interface objects, such as widgets and windows, are derived.

Tip when creating windows in pyQt, you will generally create a main class that
inherits from either QMainWindow, QWidget, or QDialog. you’ll find out more
about each of these classes and when to use them to create windows and dialog
boxes in later chapters.

We need to call the show() method on the window object to display it to the screen.

This is located inside the initializeUI() function in our EmptyWindow class. You can see

app.exec() being passed as an argument to sys.exit() in the final line of Listing 1-1.

The method exec() starts the application’s event loop and will remain here until you

quit the application. The function sys.exit() ensures a clean exit.

The steps for creating a window are better illustrated in Listing 1-2 using procedural
programming, a programming paradigm where the computer follows a set of sequential

commands to perform a task.

Listing 1-2. Minimum code needed for creating an empty window in PyQt

without OOP

procedural.py

1. Import necessary modules

import sys # use sys to accept command line arguments

from PyQt6.QtWidgets import QApplication, QWidget

app = QApplication(sys.argv) # 2. Create QApplication object

window = QWidget() # 3. Create window from QWidget object

window.show() # 4. Call show to display GUI window

5. Start the event loop. Use sys.exit to close the program

sys.exit(app.exec())

The next section demonstrates how to use built-in PyQt methods to change the main

window’s size and set the window’s title.

Chapter 1 GettinG Started with pyQt

11

 Modifying the Window

The EmptyWindow class in Listing 1-1 contains a method, initializeUI(), that creates

the window based upon the parameters we specify. The initializeUI() function is

reproduced in the following code snippet:

 def initializeUI(self):

 """Initialize the window and display its contents to

 the screen."""

 self.setGeometry(200, 100, 400, 300)

 self.setWindowTitle('Empty Window in PyQt')

 self.show()

The method setGeometry() defines the location of the window on your computer

screen and its dimensions, width and height. So the window we just created is located at

x=200, y=100 in the window and has width=400 and height=300. The setWindowTitle()

method is used to set the title of the window. Take a moment to modify the geometry

values or title text and see how your changes affect the window. You could also comment

out the two methods and see how PyQt uses default parameter settings for both the size

and window title.

We will look at further customization of the window’s layout in Chapter 4 and

appearance in Chapter 6.

 Summary
In this chapter, we took a look at getting you set up to build GUIs using PyQt6. Creating

user-friendly GUIs is important, and there are a few notions you should keep in mind

when designing your applications, such as consistency and clarity, to help users

understand your application’s purpose and features. Finally, we took a look at the basic

classes and methods needed for creating and modifying a simple main window.

In the next chapter, you will learn more about GUI development. You’ll find out how

to add text and images to GUIs using the widget QLabel while also learning one method

for arranging widgets in your windows.

Chapter 1 GettinG Started with pyQt

13
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_2

CHAPTER 2

Building a Simple GUI
Hello again! GUIs are designed to handle specific tasks, such as writing and editing

documents or playing videos. Creating any kind of UI can seem like a formidable task

with all the different widgets there are to consider. Widgets are the buttons, checkboxes,

sliders, and other components that users use to interact with the GUI.

In order to help you learn about the different kinds of widgets and understand when

you might want to use them, each chapter will utilize different widgets and apply them

to one or more GUI projects. Whenever a new widget is introduced, you will also apply

that component in a smaller practical application before using them in larger GUIs. For

some larger applications, we will also discuss the process for designing and arranging

the widgets in the application’s window.

In this chapter, you will

• Begin learning about widgets in PyQt and find out how to use them in

your GUIs

• Consider the design process for a simple GUI application

• Build basic GUIs with primarily the QLabel widget

• See how to organize widgets in a GUI using the move() method

Let’s begin by learning about a very fundamental widget.

 The QLabel Widget
After learning how to create a window in Chapter 1, we can move forward and add more

functionality with widgets. For this chapter, we will focus mainly on using QLabel as it

is a widget that you will use in almost every GUI you develop. A QLabel object acts as

a non-editable placeholder to display plain or rich text, hyperlinks, images, or GIFs.

It is also useful for creating labels around other widgets to specify their roles or give

them titles.

https://doi.org/10.1007/978-1-4842-7999-1_2

14

The GUI you will make, seen in Figure 2-1, demonstrates how to use QLabel to create

both text and image labels and will act as your Hello World for adding widgets in PyQt.

Figure 2-1. Example of using QLabel widgets to place images and text in
a window

Note For this and other examples in this chapter, you will need to download the
images folder and its contents from the GitHub repository.

 Explanation for Using QLabel
Let’s begin by using the empty window script you created in Chapter 1 and use it as the

foundation for creating Listing 2-1.

Note As applications in this book grow in complexity, programs will be broken
up into more manageable parts and built piece by piece to promote learning and
understanding of the code. Many of the programs will start by using the empty
window script from Chapter 1 as a starting point. If you get an error because a

CHApter 2 BuIldInG A SIMple GuI

15

method or variable is missing while running a section of code, don’t fear. Keep
coding and following along with each section of code to build the complete
application. For example, you will need the code from listings 2-1 to 2-2 to
complete this program.

Listing 2-1. Setting up the main window to show how to use QLabel widgets

labels.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QWidget, QLabel

from PyQt6.QtGui import QPixmap

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 250, 250)

 self.setWindowTitle("QLabel Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

First, let’s import the modules we need. To create the window, we need to import

another PyQt class from the QtWidgets module, the QLabel class.

This time we also need to import the QtGui module. The QtGui module handles

numerous graphic elements used in GUIs. QPixmap is a Qt class that is optimized for

showing images on the screen and is useful for displaying an image on a QLabel object.

CHApter 2 BuIldInG A SIMple GuI

16

You’ll need to create a MainWindow class that inherits from the QWidget. If you

copied the script from Chapter 1, simply change the name of the EmptyWindow class to

MainWindow. Next, initialize the size of the window with setGeometry() and set the title

of our GUI using setWindowTitle().

Note Qt is filled with numerous class methods called accessors, also referred
to as getters, for retrieving values and mutators, also called setters, for changing
values. You have already seen two setter examples. to change the size of a widget
or widget, you can use the setter setGeometry(). If you wanted to retrieve
that value at any time, you could use the getter geometry(). Setter and getter
methods follow that pattern in pyQt, where setters have the word set in the method
name, and the getter removes the word set and replaces the first letter with a
lowercase one.

Next, call the method setUpMainWindow(), which is used for not only setting up

and arranging the widgets in the main window but for structuring the code as well. This

method is created in Listing 2-2. Then we use the show() method to display the window.

To set up the application, first create a QApplication object. Then initiate the window.

Next, use exec() to begin the event loop. Finally, sys.exit() is used to handle safely

closing the program.

The next thing to do is to create the MainWindow method, setUpMainWindow().

Note Going by pep 8, the Style Guide for python Code, function names should
be lowercase and separated with an underscore. the guidelines also state
that mixedCase is also allowed if that is the prevailing style. this book will use
mixedCase for function and method names to follow along with styles used in Qt
and pyQt. More information about pep 8 can be found at www.python.org/dev/
peps/pep- 0008/#prescriptive- naming- conventions.

CHApter 2 BuIldInG A SIMple GuI

http://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions
http://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions

17

Listing 2-2. The setUpMainWindow() method for displaying text and

image labels

labels.py

 def setUpMainWindow(self):

 """Create QLabel to be displayed in the main window."""

 hello_label = QLabel(self)

 hello_label.setText("Hello")

 hello_label.move(105, 15)

 image = "images/world.png"

 try:

 with open(image):

 world_label = QLabel(self)

 pixmap = QPixmap(image)

 world_label.setPixmap(pixmap)

 world_label.move(25, 40)

 except FileNotFoundError as error:

 print(f"Image not found.\nError: {error}")

First, you must create a QLabel object. By passing self as a parameter to QLabel,

you set the MainWindow class as the parent of the label. This will be helpful for displaying

and arranging the widget in the parent object. Next, specify what the label will say using

setText(). Here, the text is set to "Hello". In the following line, we use the move()

method to arrange the label in the window.

PyQt has a number of layout techniques, including horizontal layouts, grid layouts,

and absolute positioning. We’ll take an in-depth look at those classes in Chapter 4.

For the programs created in this chapter, we will be using absolute positioning with the

move() method. With move(), you only need to specify the x and y pixel values of where

you want to place the widgets.

Imagine the main window as a graph where its upper-left corner is point (0,0). The

x and y values you choose in move() refer to the point where the widget's top-left corner

is placed in the main window. For our text label, we specify the values to be x=105

and y=15. This is definitely not the best method for arranging widgets in a window for

a number of reasons. For one, it is complicated and involves using trial and error for

CHApter 2 BuIldInG A SIMple GuI

18

setting your widget’s position. Another reason has to deal with resizing a window. If

you were to adjust the size of the window by dragging on the bottom-right corner, you’ll

notice that the widgets don’t move or stretch. Qt’s layout classes are great for handling

this and other issues. We’ll discuss using the layout classes in Chapter 4.

You might think learning using move() is a waste of time, but it can be very useful

to understand how to use pixel values to manipulate widgets, especially when we begin

dealing with more advanced topics like animations and graphics classes.

The image is loaded in a similar fashion, creating a world_label object to be placed

in the main window. Then we construct a QPixmap of the image and use setPixmap() to

set the image displayed onto the world_label. The image’s absolute location is set using

move(). An exception is thrown if the image cannot be found.

Each of PyQt’s different classes has their own methods that can be used to customize

and change their look and functionality. In the Appendix, you can find a list of the

widgets used in this book along with some of the more common methods you are likely

to use to modify them.

Once you run the program, you should see a window like Figure 2-1 appear on

your screen. In the next section, you’ll build a slightly more complex GUI using QLabel

widgets.

 Project 2.1 – User Profile GUI
A user profile is used to visually display personal data. The data in the profile helps

to associate certain characteristics with that user and assists others in learning more

about that individual. Depending upon the goal of the application, the information and

appearance of the profile will change.

User profiles like the one displayed in Figure 2-2 often have a number of parameters

that are either mandatory or optional and allow for some level of customization to fit

the preferences of the user, such as a profile image or background colors. Many of them

contain similar features, such as the user’s name or an “About” section.

CHApter 2 BuIldInG A SIMple GuI

19

Figure 2-2. The User Profile GUI that displays a user’s information

In the next section, we’ll break apart Figure 2-2 and think about how the label

widgets will be arranged in the window.

 Designing the User Profile GUI
Typical user profile applications often use a combination of different elements, both

interactive and static. The schematic in Figure 2-3 focuses on utilizing solely static

QLabel widgets for displaying information in the window.

CHApter 2 BuIldInG A SIMple GuI

20

If you compare Figure 2-3 with Figure 2-2, you will notice the similarity with how

they are arranged. The user interface can be divided into two parts. The upper portion

uses QLabel objects that display a profile image that lies on top of a background image.

Figure 2-3. Schematic for the User Profile GUI

The bottom portion shows the user’s information with multiple QLabel widgets,

with the textual information arranged vertically and broken down into smaller sections,

delineated by the use of different font sizes.

 Explanation for the User Profile GUI
Similar to the last application, we’ll begin by using the template GUI from Chapter 1 as

the foundation for the User Profile’s main window in Listing 2-3.

Listing 2-3. Code for setting up the User Profile GUI’s main window

user_profile.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QWidget, QLabel

from PyQt6.QtGui import QFont, QPixmap

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

CHApter 2 BuIldInG A SIMple GuI

21

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(50, 50, 250, 400)

 self.setWindowTitle("2.1 - User Profile GUI")

 self.setUpMainWindow()

 self.show()

Run program

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

For the User Profile GUI, import the same classes and modules as the earlier

application along with the addition of one new class, the QFont class from the QtGui

module, which allows for us to modify the size and types of fonts in our application. This

is perfect for creating the different header sizes.

Before creating setUpMainWindow(), let’s create a separate method in MainWindow,

seen in Listing 2-4, that will handle loading the different images and creating QLabel

objects to display them.

Listing 2-4. Code for createImageLabels() in the User Profile GUI

user_profile.py

 def createImageLabels(self):

 """Open image files and create image labels."""

 images = ["images/skyblue.png",

 "images/profile_image.png"]

 for image in images:

 try:

 with open(image):

 label = QLabel(self)

 pixmap = QPixmap(image)

 label.setPixmap(pixmap)

CHApter 2 BuIldInG A SIMple GuI

22

 if image == "images/profile_image.png":

 label.move(80, 20)

 except FileNotFoundError as error:

 print(f"Image not found.\nError: {error}")

The images list contains the specific file locations that will be used for both the blue

background and the user’s profile image in the top part of the window. Using a for loop,

iterate through the list’s items, create a QLabel object for each, instantiate a QPixmap

object, set the pixmap for the label, and if the image is the profile image, center it in the

window using move(). Using move() and absolute positioning, you can easily overlap

images, but you will need to load the images in order from the bottom-most image to the

top-most.

We can now create the MainWindow method setUpMainWindow() in Listing 2-5 where

createImageLabels() will be called.

Listing 2-5. Code for the User Profile GUI’s setUpMainWindow() method

user_profile.py

 def setUpMainWindow(self):

 """Create the labels to be displayed in the window."""

 self.createImageLabels()

 user_label = QLabel(self)

 user_label.setText("John Doe")

 user_label.setFont(QFont("Arial", 20))

 user_label.move(85, 140)

 bio_label = QLabel(self)

 bio_label.setText("Biography")

 bio_label.setFont(QFont("Arial", 17))

 bio_label.move(15, 170)

 about_label = QLabel(self)

 about_label.setText("I'm a Software Engineer with 10 years\

 experience creating awesome code.")

 about_label.setWordWrap(True)

 about_label.move(15, 190)

CHApter 2 BuIldInG A SIMple GuI

23

After the image labels are created, several QLabel objects for showing text are

instantiated. For example, the user_label displays the user’s name using setText()

in the window. You can set a QLabel widget’s font with the method setFont(). Be sure

to pass a QFont object and specify the type of font and its size. The user_label is then

centered in the window using move(). Other labels are created in a similar manner.

Listing 2-6 continues to create and arrange QLabel widgets in the main window.

Listing 2-6. Arranging more labels in the setUpMainWindow() method

user_profile.py

 skills_label = QLabel(self)

 skills_label.setText("Skills")

 skills_label.setFont(QFont("Arial", 17))

 skills_label.move(15, 240)

 languages_label = QLabel(self)

 languages_label.setText("Python | PHP | SQL | JavaScript")

 languages_label.move(15, 260)

More labels are created. Notice how the x value in move() stays at 15, leaving a small

space on the left side of the window, and the y value gradually increases, placing each

subsequent label lower. More labels are added to the GUI in Listing 2-7.

Listing 2-7. Arranging even more labels in the setUpMainWindow() method

user_profile.py

 experience_label = QLabel(self)

 experience_label.setText("Experience")

 experience_label.setFont(QFont("Arial", 17))

 experience_label.move(15, 290)

 developer_label = QLabel(self)

 developer_label.setText("Python Developer")

 developer_label.move(15, 310)

 dev_dates_label = QLabel(self)

 dev_dates_label.setText("Mar 2011 - Present")

 dev_dates_label.setFont(QFont("Arial", 10))

 dev_dates_label.move(15, 330)

CHApter 2 BuIldInG A SIMple GuI

24

 driver_label = QLabel(self)

 driver_label.setText("Pizza Delivery Driver")

 driver_label.move(15, 350)

 driver_dates_label = QLabel(self)

 driver_dates_label.setText("Aug 2015 - Dec 2017")

 driver_dates_label.setFont(QFont("Arial", 10))

 driver_dates_label.move(15, 370)

Running the application now, you will see a window appear like the one in

Figure 2-2.

 Summary
In this chapter, we discovered how to add and arrange widgets in a GUI window. The

QLabel widget is a fundamental class and is not only great for displaying text but can

also be used with other PyQt classes, such as QPixmap for displaying images or QFont

for changing the label’s text style or size. Each one of the PyQt classes includes various

methods for extending their capabilities and appearance. Examples of those can be

found in the Appendix.

In the next chapter, we’ll explore a number of different widget classes, including

QPushButton and QLineEdit, that will allow users to interact with the applications that

you develop.

CHApter 2 BuIldInG A SIMple GuI

25
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_3

CHAPTER 3

Adding More Functionality
with Widgets
What good is a user interface if it isn’t interactive? This chapter is all about learning

how to use widgets to make responsive user interfaces that react to a user’s interaction,

handle different events, and relay important information back to the user. We will take

a look at a few common widgets and see how to use them to design and build GUI

applications.

In this chapter, you will

• Be introduced to event handling and Qt’s signals and slots

mechanism

• Build GUIs using new widget classes, including QPushButton,

QLineEdit, QCheckBox, and QMessageBox

• Learn about useful methods for aligning text and adjusting

widget sizes

• Discover more about windows and dialog boxes and see how to

create classes that inherit from QDialog

• Create an application that teaches how to handle multiple windows

Before jumping into any code, let’s learn a little about event handling in PyQt.

 Event Handlers and Signals and Slots
GUIs are event driven, meaning that they respond to events that are created by the user,

from a keyboard or a mouse, or by events caused by the system, such as a timer or when

connecting to Bluetooth. In Qt, special kinds of events are even generated to handle

https://doi.org/10.1007/978-1-4842-7999-1_3

26

communication between widgets. No matter how they are generated, the application

needs to listen for those events and respond to them appropriately. This is known as

event handling. When exec() is called, the application begins listening for events until

the program is closed.

In PyQt, event handling is handled in one of two ways – either through event

handlers or with signals and slots. Event handlers take care of events. There are different

types of events that can be handled, such as paintEvent() for repainting the look of a

widget or keyPressEvent() that handles key presses. In Qt, events are objects created

from the QEvent class.

The communication between objects in Qt, such as widgets, is handled by signals

and slots. Signals are generated whenever an event occurs, such as when a button is

clicked or a checkbox is toggled on or off. Those signals then need to be handled in some

way. Slots are the methods that are connected to an event and executed in response to

the signal. Slots can either be built-in PyQt functions or Python functions that you create

yourself.

Each PyQt class has its own assortment of signals, and many of them are inherited

from parent classes. Let’s look at an example. Whenever a user clicks a button in the

window, that button click will send out, or emit, a signal:

 button.clicked.connect(self.buttonClicked)

Here, button is a widget, and clicked is the signal. In order to make use of that signal,

we must use connect() to call some function, which in this case is buttonClicked(),

which is the slot. The buttonClicked() method could then perform some action, such as

opening a new window. Many signals also pass along additional information to the slot,

such as a Boolean value that tells whether or not the button was pressed.

Signals and slots, and even making custom signals, will be covered in Chapter 7. For

now, let’s take a look at a widget that is perfect for demonstrating signals and slots.

 The QPushButton Widget
The QPushButton widget can be used to perform actions and make choices. When

you click on the QPushButton widget, it sends out a signal that can be connected to

a function. While you might typically encounter buttons with text that say OK, Next,

Cancel, Close, Yes, or No, you can also create your own buttons with descriptive text

or icons.

Chapter 3 adding More FunCtionality with widgets

27

Note there are different kinds of button classes with different usages, such as
QToolButton for selecting items in toolbars and QRadioButton for creating
groups of buttons where only a single selection can be made.

In this first example, you are going to set up a QPushButton that, when clicked, uses

signals and slots to change the text of a QLabel widget and shows how to handle closing

an application’s main window.

Let’s take a look at how to build the GUI.

 Explanation for Using QPushButton
Open a new file and copy the code from the empty window script from Chapter 1 into

it. As you can see in Listing 3-1, you’ll need to import a few more classes, including the

QPushButton class from QtWidgets. The QtCore module contains a bunch of non-GUI-

related classes. The Qt class refers to the Qt Namespace, which contains many identifiers

used for setting the properties of widgets and other classes.

Listing 3-1. Setting up the main window for using QPushButton widgets

buttons.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton)

from PyQt6.QtCore import Qt

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 3 adding More FunCtionality with widgets

28

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 250, 150)

 self.setWindowTitle("QPushButton Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Be sure to set the main window’s starting x and y positions and size using

setGeometry(). Then set the window’s title and call the setUpMainWindow() method

which we’ll create in Listing 3-2.

Listing 3-2. The setUpMainWindow() method for using buttons

buttons.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.times_pressed = 0

 self.name_label = QLabel(

 "Don't push the button.", self)

 self.name_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 self.name_label.move(60, 30)

 self.button = QPushButton("Push Me", self)

 self.button.move(80, 70)

 self.button.clicked.connect(self.buttonClicked)

The variable times_pressed will be used to keep track of how many times button

is pressed. The window for this application only contains a QLabel and a QPushButton.

Rather than using setText() to assign the text for name_label, we can instead pass the

text we want to display as the first argument when instantiating the QLabel object.

Chapter 3 adding More FunCtionality with widgets

29

It is possible to align the contents of widgets that display text. To do so, use

setAlignment(), and because we’re using PyQt6, be sure to pass the full enum type, Qt.

AlignmentFlag. There are different kinds of alignment flags, some of which are

• AlignLeft – Aligns text to the left edge

• AlignRight – Aligns text to the right edge

• AlignHCenter and AlignVCenter – Centers text horizontally and

vertically, respectively

• AlignTop and AlignBottom – Aligns text to the top and bottom,

respectively

Here, let’s use AlignCenter, which is a combination of AlignVCenter and

AlignHCenter. Use move() to set the absolute position of the widget.

Note instead of using setters, many of the properties for widgets can be set
by passing them as arguments to a widget instance. For example, rather than
using setAlignment(), you could set the alignment for the label by passing the
keyword argument alignment=Qt.AlignmentFlag.AlignCenter after self.

Next, create the QPushButton object, and pass the button’s text and self, a reference

to the MainWindow class, as arguments. Clicking on the button will emit the clicked

signal, which is connected to the buttonClicked() slot (shown in Listing 3-3).

Listing 3-3. Code for the buttonClicked() slot

buttons.py

 def buttonClicked(self):

 """Handle when the button is clicked.

 Demonstrates how to change text for widgets,

 update their sizes and locations, and how to

 close the window due to events."""

 self.times_pressed += 1

 if self.times_pressed == 1:

 self.name_label.setText("Why'd you press me?")

 if self.times_pressed == 2:

Chapter 3 adding More FunCtionality with widgets

30

 self.name_label.setText("I'm warning you.")

 self.button.setText("Feelin' Lucky?")

 self.button.adjustSize()

 self.button.move(70, 70)

 if self.times_pressed == 3:

 print("The window has been closed.")

 self.close()

In buttonClicked(), we’ll first update the variable times_pressed. Next, there are

a series of if statements that depend upon the value of times_pressed. You can update

text values for widgets even after they have been created. If times_pressed equals 1,

change the text for name_label using setText().

For a value of 2, change the text for both name_label and button. For button, you

will also need to adjust its size to fit the longer text value. Since QPushButton inherits

QWidget, we can use the QWidget method adjustSize() to change the size of name_label

in order to fit the longer text. Since absolute positioning is being used to arrange widgets,

you’ll also need to use move() to center button in the window. You can see examples of

the text changing in Figure 3-1.

Figure 3-1. Clicking on the QPushButton will change the label’s text and,
eventually, the button’s text

Finally, for 3, the QWidget method close() is used to close widgets. In this case,

self.close() is referring to the main window and closes the application. We’ll look

more at closing events later in the “Project 3.1 – Login GUI and Registration Dialog”

section.

Next, we’ll look at a widget that is useful for collecting user input.

Chapter 3 adding More FunCtionality with widgets

31

 The QLineEdit Widget
It is often necessary for a user to input a single line of text, such as a username or a

password. With the QLineEdit widget, you can collect data from someone. QLineEdit

also supports normal text editing functions such as cut, copy, and paste, and redo or

undo. There are also additional capabilities for hiding text when it is entered, using

placeholder text, or even setting a limit on the length of the text.

Tip if you need multiple lines for a user to enter text, use the QTextEdit widget
instead.

The GUI you will build in Figure 3-2 demonstrates how to set up and use QLineEdit

widgets. You can use other widgets, such as QPushButton, along with signals and slots to

retrieve the text in a QLineEdit object or clear its text.

Figure 3-2. QLineEdit and QPushButton widgets used for collecting and
clearing text

In the next section, you’ll find out how to use QLineEdit.

 Explanation for Using QLineEdit
Listing 3-4 sets up the main window seen in Figure 3-2. You’ll need to import different

widget classes, including QLabel, QLineEdit, and QPushButton, as well as Qt from the

QtCore module into the empty window script from Chapter 1.

Chapter 3 adding More FunCtionality with widgets

32

Listing 3-4. Setting up the main window for using QLineEdit widgets

line_edits.py
Import necessary modules
import sys
from PyQt6.QtWidgets import (QApplication, QWidget,
 QLabel, QLineEdit, QPushButton)
from PyQt6.QtCore import Qt

class MainWindow(QWidget):

 def __init__(self):
 super().__init__()
 self.initializeUI()

 def initializeUI(self):
 """Set up the application's GUI."""
 self.setMaximumSize(310, 130)
 self.setWindowTitle("QLineEdit Example")

 self.setUpMainWindow()
 self.show()

if __name__ == '__main__':
 app = QApplication(sys.argv)
 window = MainWindow()
 sys.exit(app.exec())

Previous examples have used setGeometry() for setting the location and size of a

window on the screen. One thing you can do is restrict the size of the window. Here, let’s

use the QWidget method setMaximumSize() and pass the maximum width and height for

MainWindow. Some other methods for setting window sizes include the following:

• setMinimumSize() – Sets the widget’s minimum size

• setMinimumHeight() and setMinimumWidth() – Sets the widget’s

minimum height and width, respectively

• setMaximumHeight() and setMaximumWidth() – Sets the widget’s

maximum height and width, respectively

• setFixedSize() – Sets the maximum and minimum sizes for the

widget, preventing it from changing sizes

Chapter 3 adding More FunCtionality with widgets

33

Tip these methods are useful for not only setting the size constraints of windows
but for widget objects as well, since they all inherit QWidget.

To set up the widgets in the setUpMainWindow() method in Listing 3-5, we’ll first

create two QLabel objects, then a QLineEdit widget, and two QPushButton objects.

Listing 3-5. The setUpMainWindow() method for using line editing widgets

line_edits.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 QLabel("Please enter your name below.",

 self).move(70, 10)

 name_label = QLabel("Name:", self)

 name_label.move(20, 50)

 self.name_edit = QLineEdit(self)

 self.name_edit.resize(210, 20)

 self.name_edit.move(70, 50)

 clear_button = QPushButton("Clear", self)

 clear_button.move(140, 90)

 clear_button.clicked.connect(self.clearText)

 accept_button = QPushButton("OK", self)

 accept_button.move(210, 90)

 accept_button.clicked.connect(self.acceptText)

The two QLabel objects are just examples of creating widgets. You can create widgets

and arrange them within your GUI without having to assign them to a variable.

The QLineEdit object, name_edit, is an example of how to modify a widget’s size

using the resize() method. You’ll need to specify the widget’s desired height and

width values.

The clear_button and accept_button objects are connected to the clearText()

and acceptText() slots, created in Listing 3-6.

Chapter 3 adding More FunCtionality with widgets

34

Listing 3-6. Code for clearText() and acceptText() slots

line_edits.py

 def clearText(self):

 """Clear the QLineEdit input field."""

 self.name_edit.clear()

 def acceptText(self):

 """Accept the user's input in the QLineEdit

 widget and close the program."""

 print(self.name_edit.text())

 self.close()

When clear_button is clicked, it emits a signal that is connected to the clearText()

slot, and the name_edit widget will react to the signal and clear its current text. If the user

clicks accept_button, the text in name_edit is read using the getter text() and printed

in your computer’s shell. The application then closes.

Let’s take a look at another commonly found widget in desktop applications.

 The QCheckBox Widget
The QCheckBox widget is a selectable button that generally has two states: on and off.

This makes them perfect for representing features in your GUI that can either be enabled

or disabled, or for selecting from a list of options like in a survey.

The application in Figure 3-3 shows a basic questionnaire GUI. The user is allowed

to select all checkboxes that apply to them, and each time the user clicks a checkbox, we

call a method to show how to determine the widget’s current state.

Figure 3-3. Example that uses QCheckBox widgets

Chapter 3 adding More FunCtionality with widgets

35

Note the checkboxes in QCheckBox are not mutually exclusive, meaning you
can select more than one checkbox at a time. to make them mutually exclusive,
add the checkboxes to a QButtonGroup object or consider using QRadioButton.

The QCheckBox class can also be used in dynamic applications, where a series of

checkbox widgets could be used to select or change a GUI’s text, appearance, or even

state (by enabling or disabling interactivity).

 Explanation for Using QCheckBox
Begin creating the MainWindow class like before by using the empty window script from

Chapter 1 as a template. For this application, import QCheckBox and other classes shown

in Listing 3-7.

Listing 3-7. Setting up the main window for using QCheckBox widgets

checkboxes.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QCheckBox,

 QLabel)

from PyQt6.QtCore import Qt

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 250, 150)

 self.setWindowTitle("QCheckBox Example")

 self.setUpMainWindow()

 self.show()

Chapter 3 adding More FunCtionality with widgets

36

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

In Listing 3-8, we set up the method for arranging widgets in the window.

Listing 3-8. The setUpMainWindow() method for using checkboxes

checkboxes.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 header_label = QLabel("Which shifts can you work? \

 (Please check all that apply)", self)

 header_label.setWordWrap(True)

 header_label.move(20, 10)

 # Set up the checkboxes

 morning_cb = QCheckBox("Morning [8 AM-2 PM]", self)

 morning_cb.move(40, 60)

 #morning_cb.toggle() # Uncomment to start checked

 morning_cb.toggled.connect(self.printSelected)

 after_cb = QCheckBox("Afternoon [1 PM-8 PM]", self)

 after_cb.move(40, 80)

 after_cb.toggled.connect(self.printSelected)

 night_cb = QCheckBox("Night [7 PM-3 AM]", self)

 night_cb.move(40, 100)

 night_cb.toggled.connect(self.printSelected)

A QLabel widget is used to display a question to the user, helping the user to

understand the purpose of the GUI. For labels with longer text that won’t fit on one line,

use the setWordWrap() method.

Three QCheckBox objects are also created, each with a variable name that is

representative of the widget’s purpose. The text displayed next to each checkbox is

passed as the first argument. The QCheckBox method toggle() can be used to toggle

Chapter 3 adding More FunCtionality with widgets

37

the checkbox on or off. When a checkbox is selected, rather than using the clicked

signal like with QPushButton, use toggled to emit a signal that is connected to the slot

printSelected(), shown in Listing 3-9.

Tip it is possible to connect multiple signals to the same slot.

Listing 3-9. Code for the printSelected() slot

checkboxes.py

 def printSelected(self, checked):

 """Print the text of a QCheckBox object when selected

 or deselected. Use sender() to determine which widget

 is sending the signal."""

 sender = self.sender()

 if checked:

 print(f"{sender.text()} Selected.")

 else:

 print(f"{sender.text()} Deselected.")

The toggled() signal also passes along additional information, checked, which

returns True if the checkbox is selected. Otherwise, it returns False.

With so many widgets connected to the same slot, it can be hard to determine which

widget is being interacted with and emitting the signal. Thankfully, the QObject method

sender() returns which object (the widget) is sending the signal. (All widgets inherit the

QObject class.) For this example, use the getter text() to get the checkbox object’s text and

print its value in the shell. An example of the output to the terminal can be seen in Figure 3-4.

Figure 3-4. Output to the shell when the different checkboxes are selected or
deselected

Chapter 3 adding More FunCtionality with widgets

38

Let’s take a look at one more very important class for creating interactive and user-

friendly GUIs.

 The QMessageBox Dialog
When a user closes an application or saves their work, or an error occurs, they will

typically see a dialog box pop up and display some sort of key information. The user can

then interact with that dialog box, often by clicking a button to respond to the prompt.

Dialog boxes are a very important form of feedback, or methods of monitoring and

communicating changes back to the user.

The QMessageBox class can be used to not only alert the user to a situation but also

to decide how to handle the matter. For example, when closing a document you just

modified, you might get a dialog box with buttons asking you to Save, Don’t Save, or

Cancel. Four common types of predefined QMessageBox widgets in PyQt are shown in

Table 3-1.

Table 3-1. Four types of static QMessageBox dialogs in PyQt. Images from

www.riverbankcomputing.com

QMessageBox Icons Types Details

Question ask the user a question

information

display information during general

operations

warning report noncritical errors

Critical report critical errors

Chapter 3 adding More FunCtionality with widgets

http://www.riverbankcomputing.com

39

 Windows vs. Dialogs
Applications will typically consist of one main window. A window is used to visually

separate applications from each other and generally consists of menus, a toolbar, and

other kinds of widgets that can often act as the main interface for a GUI application.

Windows in Qt are typically considered widgets that appear on the screen and don’t have

a parent widget.

A dialog box, or simply dialog, pops up and displays options or information while

a user is working in the main window. Most kinds of dialog boxes will have a parent

window that will be used to determine the position of the dialog with respect to its

owner. This also means that communication occurs between the window and the dialog

box and dialogs can be used to update the main window.

There are two kinds of dialog boxes. Modal dialogs block user interaction from the

rest of the program until the dialog box is closed. Modeless dialogs allow the user to

interact with both the dialog and the rest of the application.

 Explanation for Using QMessageBox
The QMessageBox class produces a modal dialog box, and in the following example,

we will take a look at how to use three of the predefined QMessageBox message types:

question, information, and warning.

Note For this example, you will also need the authors.txt file found in the
files folder of this chapter’s repository on github.

This application’s main window can be seen in Figure 3-5, and a couple of

QMessageBox dialogs are shown in Figure 3-6.

Chapter 3 adding More FunCtionality with widgets

40

Figure 3-5. Main window for the QMessageBox example where the user can
search for an author’s name in a text file

Figure 3-6. Information dialog (left) that lets the user know that their search was
successful. Question dialog (right) that asks if the user wants to continue searching
if the author wasn’t found

For Listing 3-10, you will need to import a few additional classes, including the

QMessageBox class from QtWidgets, into the empty window script from Chapter 1.

Listing 3-10. Setting up the main window for using QMessageBox dialogs

message_boxes.py
Import necessary modules
import sys
from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,
 QMessageBox, QLineEdit, QPushButton)
from PyQt6.QtGui import QFont

class MainWindow(QWidget):

 def __init__(self):
 super().__init__()
 self.initializeUI()

Chapter 3 adding More FunCtionality with widgets

41

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 340, 140)

 self.setWindowTitle("QMessageBox Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

To build the window seen in Figure 3-5, you’ll need to create a few QLabel objects, a

QLineEdit widget for the user to enter an author’s name, and a QPushButton object that

emits a signal when pressed and searches for the text in a text file. This is all handled in

Listing 3-11.

Listing 3-11. The setUpMainWindow() method for using message boxes

message_boxes.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 catalogue_label = QLabel("Author Catalogue", self)

 catalogue_label.move(100, 10)

 catalogue_label.setFont(QFont("Arial", 18))

 search_label = QLabel(

 "Search the index for an author:", self)

 search_label.move(20, 40)

 # Create author QLabel and QLineEdit widgets

 author_label = QLabel("Name:", self)

 author_label.move(20, 74)

 self.author_edit = QLineEdit(self)

 self.author_edit.move(70, 70)

 self.author_edit.resize(240, 24)

 self.author_edit.setPlaceholderText(

 "Enter names as: First Last")

Chapter 3 adding More FunCtionality with widgets

42

 # Create the search QPushButton

 search_button = QPushButton("Search", self)

 search_button.move(140, 100)

 search_button.clicked.connect(self.searchAuthors)

The widgets catalogue_label and search_label are used to convey information

to the user. In PyQt, QLabel widgets are often placed next to QLineEdit and other input

widgets as tags. The labels can then be linked to the input widgets as buddies. Here, the

author_label and author_edit are simply placed next to each other.

Placeholder text can be used to give the user extra information about a

QLineEdit widget’s purpose or for how to format input text. This is done with

setPlaceholderText(). An example of this is seen in Figure 3-5.

Lastly, search_button emits a signal that calls the slot searchAuthors() in Listings

3-12 and 3-13.

Listing 3-12. First part of the code for the searchAuthors() slot

message_boxes.py

 def searchAuthors(self):

 """Search through a catalogue of names.

 If a name is found, display the Author Found dialog.

 Otherwise, display Author Not Found dialog."""

 file = "files/authors.txt"

 try:

 with open(file, "r") as f:

 authors = [line.rstrip("\n") for line in f]

 # Check for name in authors list

 if self.author_edit.text() in authors:

 QMessageBox.information(self, "Author Found",

 "Author found in catalogue!",

 QMessageBox.StandardButton.Ok)

Chapter 3 adding More FunCtionality with widgets

43

When the user clicks on search_button, the program will try to open the authors.

txt file and store its contents in the authors list. If the user enters a name in author_

edit that is contained in the authors.txt file, an information dialog appears like the

first image in Figure 3-6.

To create a QMessageBox dialog from one of the predefined types, first, create a

QMessageBox object and call one of the static functions, in this case, information. Next,

pass the parent widget. Then set the dialog's title, "Author Found", and the text that will

appear inside the dialog that provides feedback, possibly with information about actions

a user could take. This is followed by the types of standard buttons that will appear in the

dialog. Multiple buttons can be used and separated with a pipe key, |. Standard buttons

include Open, Save, Cancel, Reset, Yes, and No. The Appendix lists other QMessageBox.

StandardButton types.

Note on macos, when a message box appears, the title is generally ignored due
to macos guidelines. if you are using an apple computer and don’t see a title in
the dialog boxes, don’t fear! you haven’t done anything wrong.

Listing 3-13. Second part of the code for the searchAuthors() slot

message_boxes.py

 else:

 answer = QMessageBox.question(self,

 "Author Not Found",

 """<p>Author not found in catalogue.</p>

 <p>Do you wish to continue?</p>""",

 QMessageBox.StandardButton.Yes | \

 QMessageBox.StandardButton.No,

 QMessageBox.StandardButton.No)

 if answer == QMessageBox.StandardButton.No:

 print("Closing application.")

 self.close()

 except FileNotFoundError as error:

 QMessageBox.warning(self, "Error",

 f"""<p>File not found.</p>

Chapter 3 adding More FunCtionality with widgets

44

 <p>Error: {error}</p>

 Closing application.""",

 QMessageBox.StandardButton.Ok)

 self.close()

If the author is not found, a question dialog (second image in Figure 3-6) appears

asking the user if they want to search again or quit the program. The standard buttons

Yes and No appear in the window. The final argument is used to specify which button

you want to highlight in the dialog and set as the default button.

Note pyQt text widgets are able to display rich text using a subset of the
HyperText Markup Language (HTML) and Cascading Style Sheets (CSS). this
topic is explored more in Chapter 6, but for now, we’ll use htMl to arrange the text
that is placed between the htMl tags <p> and </p> into paragraphs.

If an error occurs and the file is not found, the warning dialog in Figure 3-7 appears.

Figure 3-7. Warning dialog that informs the user that the authors.txt file was
not found

With everything you have learned up to this point, it is a good time to practice

creating a larger project.

 Project 3.1 – Login GUI and Registration Dialog
A login user interface is probably one of the most common interfaces you interact with

on a regular basis – signing into your computer, your online bank account, or your email

or social media accounts; logging into your phone; or even signing up for some new app.

The login interface is everywhere.

Chapter 3 adding More FunCtionality with widgets

45

For this example, you will create three different windows. The first window that will

appear is the login GUI in Figure 3-8.

Figure 3-8. The Login window

This project also demonstrates how to open and close other windows and dialogs

and begins looking at how to use event handlers. The first time someone uses your

applications, you may want them to sign up and create their own username and

password. The Registration dialog in Figure 3-9 appears when a user clicks the Sign Up

button in Figure 3-8.

Figure 3-9. The Registration dialog for creating a new user

If a user successfully logs in, they will be greeted to the window in Figure 3-10 that

simply displays a QLabel widget with the image of a kingfisher.

Chapter 3 adding More FunCtionality with widgets

46

Figure 3-10. The application’s main window that appears if a user successfully
logs in. The image of the kingfisher is from https://pixabay.com

The next section discusses the different windows, widgets, and their functionalities

in this application.

 Designing the Login GUI and Registration Dialog
When designing a login interface, you want to create a GUI that clearly labels its widgets,

differentiates between the login and signup fields, and helps users to better navigate

through potential errors, such as if caps lock is on or if the username is incorrect. While

the look and layout of the login GUI may change between platforms, they generally have

a few key components that are common throughout, such as

• Username and password entry fields

• Checkboxes that may remember the user’s login information or

reveal the password when checked

• Buttons that users can click to log in or even register new accounts

For the Login window in Figure 3-8, two separate QLineEdit widgets are used for

users to enter their username and password. Under the password QLineEdit widget,

there is a checkbox to toggle if the password is hidden or not. There are also two

QPushButton widgets: one that the user can click to log in and the other to register a new

account.

Chapter 3 adding More FunCtionality with widgets

https://pixabay.com

47

When the user clicks the Login button, a signal is emitted. The connected slot is used

to check if input is correct. QMessageBox dialogs are used to provide feedback if the user

exists or does not exist, or as an error message if the users.txt file does not exist. If a

successful login does occur, then the main window in Figure 3-10 will appear. You can

find users.txt in the files folder of this chapter’s GitHub repository.

If a user wants to register a new account, they can click the Sign Up button in the

Login window and the modal dialog in Figure 3-9 appears. The user cannot interact with

the Login window unless the Registration dialog is closed.

Finally, this example also demonstrates how to handle the event when the user

closes the window. Rather than just closing the application with close(), you will see

how to use the event handler closeEvent() to customize how your programs can close.

The Login GUI is what the user first sees, so let’s begin there.

 Explanation for Creating the Login GUI
The widgets and concepts learned throughout Chapters 1, 2, and 3 will be applied in this

project. Listing 3-14 starts the project by using the empty window script from Chapter 1

to begin building the LoginWindow class. Go ahead and import many of the widget and

other classes you have seen before as well as the NewUserDialog class you’ll create later

in the “Explanation for Creating the Registration Dialog” section.

Listing 3-14. Setting up the window for the Login GUI

login_gui.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QLineEdit, QPushButton, QCheckBox, QMessageBox)

from PyQt6.QtGui import QFont, QPixmap

from PyQt6.QtCore import Qt

from registration import NewUserDialog

class LoginWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 3 adding More FunCtionality with widgets

48

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(360, 220)

 self.setWindowTitle("3.1 – Login GUI")

 self.setUpWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = LoginWindow()

 sys.exit(app.exec())

The LoginWindow class is not this application’s main window. The class could inherit

the QDialog class, the base class for creating dialogs, but we don’t need to worry about

window modality here, so simply inheriting QWidget will work. Also, setFixedSize() is

used to stop the window from growing or shrinking.

Listing 3-15 begins setting up the setUpWindow() method for the LoginWindow class.

Listing 3-15. First part of the setUpWindow() method for the Login GUI

login_gui.py

 def setUpWindow(self):

 """Create and arrange widgets in the main window."""

 self.login_is_successful = False

 login_label = QLabel("Login", self)

 login_label.setFont(QFont("Arial", 20))

 login_label.move(160, 10)

 # Create widgets for username and password

 username_label = QLabel("Username:", self)

 username_label.move(20, 54)

 self.username_edit = QLineEdit(self)

 self.username_edit.resize(250, 24)

 self.username_edit.move(90, 50)

Chapter 3 adding More FunCtionality with widgets

49

 password_label = QLabel("Password:", self)

 password_label.move(20, 86)

 self.password_edit = QLineEdit(self)

 self.password_edit.setEchoMode(

 QLineEdit.EchoMode.Password)

 self.password_edit.resize(250, 24)

 self.password_edit.move(90, 82)

The login_is_successful variable keeps track of whether or not the user has logged

in. A couple of QLabel and QLineEdit input widgets are created for entering a username

and a password. The widgets are then arranged side by side. The setEchoMode() method

provided by QLineEdit is very useful for hiding text as it is being input. The Password

flag is used here to mask characters while entering the password. Listing 3-16 continues

creating and arranging widgets in LoginWindow.

Listing 3-16. Second part of the setUpWindow() method for the Login GUI

login_gui.py

 # Create QCheckBox for displaying password

 self.show_password_cb = QCheckBox(

 "Show Password", self)

 self.show_password_cb.move(90, 110)

 self.show_password_cb.toggled.connect(

 self.displayPasswordIfChecked)

 # Create QPushButton for signing in

 login_button = QPushButton("Login", self)

 login_button.resize(320, 34)

 login_button.move(20, 140)

 login_button.clicked.connect(self.clickLoginButton)

 # Create sign up QLabel and QPushButton

 not_member_label = QLabel("Not a member?", self)

 not_member_label.move(20, 186)

 sign_up_button = QPushButton("Sign Up", self)

 sign_up_button.move(120, 180)

 sign_up_button.clicked.connect(self.createNewUser)

Chapter 3 adding More FunCtionality with widgets

50

Create a QCheckBox called show_password_cb that, when toggled, will emit a signal

that calls the displayPasswordIfChecked() slot. The login_button uses the clicked

signal to call the clickLoginButton() slot. The sign_up_button opens up a dialog to

register new users and calls the createNewUser() slot when clicked.

The next step is to create the various slots. We’ll start in Listing 3-17 with

clickLoginButton() used by login_button.

Listing 3-17. First part of the clickLoginButton() slot

login_gui.py

 def clickLoginButton(self):

 """Check if username and password match any existing

 entries in users.txt.

 If found, show QMessageBox and close the program.

 If they don't, display a warning QMessageBox."""

 users = {} # Dictionary to store user information

 file = "files/users.txt"

 try:

 with open(file, "r") as f:

 for line in f:

 user_info = line.split(" ")

 username_info = user_info[0]

 password_info = user_info[1].strip("\n")

 users[username_info] = password_info

 # Collect user and password information

 username = self.username_edit.text()

 password = self.password_edit.text()

This method, which is continued in Listing 3-18, first checks to see if the users.txt

file exists. If it does, the user’s information is collected from the file, and username_info

and password_info values are added to the users dictionary. Next, the text values for

username_edit and password_edit are collected using text().

Chapter 3 adding More FunCtionality with widgets

51

Listing 3-18. Second part of the clickLoginButton() slot

login_gui.py

 if (username, password) in users.items():

 QMessageBox.information(self,

 "Login Successful!",

 "Login Successful!",

 QMessageBox.StandardButton.Ok,

 QMessageBox.StandardButton.Ok)

 self.login_is_successful = True

 self.close() # Close the login window

 self.openApplicationWindow()

 else:

 QMessageBox.warning(self, "Error Message",

 "The username or password is incorrect.",

 QMessageBox.StandardButton.Close,

 QMessageBox.StandardButton.Close)

 except FileNotFoundError as error:

 QMessageBox.warning(self, "Error",

 f"""<p>File not found.</p>

 <p>Error: {error}</p>""",

 QMessageBox.StandardButton.Ok)

 # Create file if it doesn't exist

 f = open(file, "w")

The Python dict method items() returns a list of key-value pairs as tuples that can

be used to check for a matching username-password pair in users.

If a match is found, the top QMessageBox in Figure 3-11 pops up. Then login_is_

successful is set to True, and the current window closes. The example’s main window

appears by calling openApplicationWindow(), which is created in the “Explanation for

Creating the Main Window” section. It is worth noting that close() does not actually

close the window like you may think. The window is merely hidden from view. This is

explored further in the “Using Event Handlers to Close a Window” subsection.

Chapter 3 adding More FunCtionality with widgets

52

Figure 3-11. The information dialog (top) that informs the user that their input
was correct. The warning dialog (bottom) that informs the user of an error

Otherwise, a warning QMessageBox, the bottom image in Figure 3-11, is displayed if

the username or password is incorrect.

The following subsections finish creating the LoginWindow class.

Hiding Input for QLineEdit

The toggled signal used by show_password_cb in Listing 3-16 is connected to the

displayPasswordIfChecked() slot in Listing 3-19.

Listing 3-19. Code for the displayPasswordIfChecked() slot

login_gui.py

 def displayPasswordIfChecked(self, checked):

 """If QCheckButton is enabled, view the password.

 Else, mask the password so others can not see it."""

 if checked:

 self.password_edit.setEchoMode(

 QLineEdit.EchoMode.Normal)

 elif checked == False:

 self.password_edit.setEchoMode(

 QLineEdit.EchoMode.Password)

Chapter 3 adding More FunCtionality with widgets

53

If show_password_cb is checked, then the password’s characters can be seen

using setEchoMode() and passing the enum QLineEdit.EchoMode with the Normal

flag. Otherwise, if unchecked, the password’s text is masked so others cannot see the

characters. An example of this can be seen in Figure 3-8. Flags also exist for hiding the

password completely, NoEcho, and for displaying only the character being entered and

masking others, PasswordEchoOnEdit.

 How to Open a New Window or Dialog

It is possible to have multiple windows and dialogs open at the same time in PyQt.

Opening a QMessageBox is relatively easy – simply create a QMessageBox instance when

needed. However, for custom dialogs and windows, you will also need to call a method

to display them.

The sign_up_button, when clicked, emits a signal that is connected to the

createNewUser() method seen in Listing 3-20.

Listing 3-20. Code for the createNewUser() slot and

openApplicationWindow() method

login_gui.py

 def createNewUser(self):

 """Open a dialog for creating a new account."""

 self.create_new_user_window = NewUserDialog()

 self.create_new_user_window.show()

 def openApplicationWindow(self):

 """Open a mock main window after the user logs in."""

 self.main_window = MainWindow()

 self.main_window.show()

In createNewUser(), create an instance of NewUserDialog from the registration

module. To display the modal dialog, call show(). Take a look at the “Explanation for

Creating the Registration Dialog” section for creating the class. It is a similar pattern for

opening the main window after the user logs in.

Chapter 3 adding More FunCtionality with widgets

54

 Using Event Handlers to Close a Window

A good practice when quitting a program is to present a dialog box, like the one in

Figure 3-12, confirming whether the user really wants to quit or not. In most programs,

this will prevent the user from forgetting to save their latest work.

Figure 3-12. QMessageBox that appears before quitting the application

When an event occurs, an event object is created depending upon the type of event,

and that object is passed to the appropriate object, such as a widget. Event handlers are

then used to take care of the event if accepted. Otherwise, the event can be ignored.

When a QWidget is closed in PyQt, a QCloseEvent object is generated. However,

widgets and windows are not actually closed. Rather, they are hidden from view if the

event is accepted. The reason that the application actually quits when the LoginWindow

instance is closed is due to a signal that is emitted when the last main window (one with

no parent) is no longer visible. That signal is QApplication.lastWindowClosed(), which

is already handled by PyQt.

In order to change how the closeEvent() method is handled, in this case, for the

LoginWindow class, you will need to reimplement the closeEvent(). An example of this

is shown in Listing 3-21.

Listing 3-21. Modifying the closeEvent() event handler

login_gui.py

 def closeEvent(self, event):

 """Reimplement the closing event to display a

 QMessageBox before closing."""

 if self.login_is_successful == True:

 event.accept()

 else:

Chapter 3 adding More FunCtionality with widgets

55

 answer = QMessageBox.question(

 self, "Quit Application?",

 "Are you sure you want to QUIT?",

 QMessageBox.StandardButton.No | \

 QMessageBox.StandardButton.Yes,

 QMessageBox.StandardButton.Yes)

 if answer == QMessageBox.StandardButton.Yes:

 event.accept()

 if answer == QMessageBox.StandardButton.No:

 event.ignore()

If the window was closed after login was successful, the event is accepted using the

accept() method. If the window is closed for some other reason, a QMessageBox asks

the user if they are sure about quitting. If the response from the question QMessageBox

is Yes, the close event is accepted, and the program is closed. Otherwise, the event is

ignored using ignore().

The next section creates the MainWindow class.

 Explanation for Creating the Main Window
The main window used in this project is a very basic example, but the purpose here is to

demonstrate how to work with more than one window. In the same Python script as the

LoginWindow class, create a new class, MainWindow, that inherits QWidget. This new class

can be seen in Listing 3-22.

Listing 3-22. The MainWindow class

login_gui.py

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(640, 426)

 self.setWindowTitle('3.1 – Main Window')

Chapter 3 adding More FunCtionality with widgets

56

 self.setUpMainWindow()

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 image = "images/background_kingfisher.jpg"

 try:

 with open(image):

 main_label = QLabel(self)

 pixmap = QPixmap(image)

 main_label.setPixmap(pixmap)

 main_label.move(0, 0)

 except FileNotFoundError as error:

 print(f"Image not found.\nError: {error}")

The size of the window is set using setMinimumSize(). One thing to note is that there

is no show() method called in initializeUI(). This is because the window will only

appear after a successful login (seen in Listing 3-18). The main window in Figure 3-10

presents a simple window with a QLabel.

The classes you create can inherit a majority of PyQt’s classes, including ones for

dialogs, as you shall see in the next section.

 Explanation for Creating the Registration Dialog
Customization is one of the greatest benefits of using PyQt to build GUIs. When the user

wants to register a new user, the dialog in Figure 3-9 appears. For the Registration dialog

in Listings 3-23 to 3-27, create a separate Python script to keep the code organized and to

demonstrate how to import your own custom classes into your projects.

Listing 3-23. Code for setting up the Registration dialog that inherits QDialog

registration.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QDialog, QLabel,

 QPushButton, QLineEdit, QMessageBox)

from PyQt6.QtGui import QFont, QPixmap

Chapter 3 adding More FunCtionality with widgets

57

class NewUserDialog(QDialog):

 def __init__(self):

 super().__init__()

 self.setModal(True)

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(360, 320)

 self.setWindowTitle("3.1 - Registration GUI")

 self.setUpWindow()

The Registration dialog contains two QLabel widgets for the header and user image

in Figure 3-10. These are created in Listing 3-24.

Listing 3-24. Adding labels in the Registration dialog’s setUpWindow() method

registration.py

 def setUpWindow(self):

 """Create and arrange widgets in the window for

 collecting new account information."""

 login_label = QLabel("Create New Account", self)

 login_label.setFont(QFont("Arial", 20))

 login_label.move(90, 20)

 # Create QLabel for image

 user_image = "images/new_user_icon.png"

 try:

 with open(user_image):

 user_label = QLabel(self)

 pixmap = QPixmap(user_image)

 user_label.setPixmap(pixmap)

 user_label.move(150, 60)

 except FileNotFoundError as error:

 print(f"Image not found. Error: {error}")

Chapter 3 adding More FunCtionality with widgets

58

Next, four QLineEdit widgets and their corresponding labels are created in

Listing 3-25.

Listing 3-25. Adding labels and line editing widgets in the Registration dialog’s

setUpWindow() method

registration.py

 # Create name QLabel and QLineEdit widgets

 name_label = QLabel("Username:", self)

 name_label.move(20, 144)

 self.name_edit = QLineEdit(self)

 self.name_edit.resize(250, 24)

 self.name_edit.move(90, 140)

 full_name_label = QLabel("Full Name:", self)

 full_name_label.move(20, 174)

 full_name_edit = QLineEdit(self)

 full_name_edit.resize(250, 24)

 full_name_edit.move(90, 170)

 # Create password QLabel and QLineEdit widgets

 new_pswd_label = QLabel("Password:", self)

 new_pswd_label.move(20, 204)

 self.new_pswd_edit = QLineEdit(self)

 self.new_pswd_edit.setEchoMode(

 QLineEdit.EchoMode.Password)

 self.new_pswd_edit.resize(250, 24)

 self.new_pswd_edit.move(90, 200)

 confirm_label = QLabel("Confirm:", self)

 confirm_label.move(20, 234)

 self.confirm_edit = QLineEdit(self)

 self.confirm_edit.setEchoMode(

 QLineEdit.EchoMode.Password)

 self.confirm_edit.resize(250, 24)

 self.confirm_edit.move(90, 230)

Chapter 3 adding More FunCtionality with widgets

59

These widgets are used for collecting the user’s username, full name, password,

and an extra QLineEdit widget for ensuring that the password is entered correctly. The

button for confirming the data is set up in Listing 3-26.

Listing 3-26. Adding a signup button in the Registration dialog’s

setUpWindow() method

registration.py

 # Create sign up QPushButton

 sign_up_button = QPushButton("Sign Up", self)

 sign_up_button.resize(320, 32)

 sign_up_button.move(20, 270)

 sign_up_button.clicked.connect(self.confirmSignUp)

The sign_up_button emits a signal when clicked that calls the confirmSignUp() slot

in Listing 3-27.

Tip QDialog has its own standard buttons that can be added to a custom dialog
class using the QDialogButtonBox class.

Listing 3-27. Code for the confirmSignUp() slot

registration.py

 def confirmSignUp(self):

 """Check if user information is entered and correct.

 If so, append username and password text to file."""

 name_text = self.name_edit.text()

 pswd_text = self.new_pswd_edit.text()

 confirm_text = self.confirm_edit.text()

 if name_text == "" or pswd_text == "":

 # Display QMessageBox if passwords don't match

 QMessageBox.warning(self, "Error Message",

 "Please enter username or password values.",

 QMessageBox.StandardButton.Close,

 QMessageBox.StandardButton.Close)

Chapter 3 adding More FunCtionality with widgets

60

 elif pswd_text != confirm_text:

 # Display QMessageBox if passwords don't match

 QMessageBox.warning(self, "Error Message",

 "The passwords you entered do not match.",

 QMessageBox.StandardButton.Close,

 QMessageBox.StandardButton.Close)

 else:

 # Return to login window if passwords match

 with open("files/users.txt", 'a+') as f:

 f.write("\n" + name_text + " ")

 f.write(pswd_text)

 self.close()

The confirmSignUp() slot first reads the text from name_edit, new_pswd_edit, and

confirm_edit. Next, a series of checks are performed to test if name_text or pswd_text

is empty and then to see if pswd_text and confirm_text are the same. One of the two

QMessageBox dialogs in Figure 3-13 will pop up if either of the conditions are met.

Figure 3-13. A warning dialog that handles if the username or password fields are
empty (left) and another that lets the user know the passwords don’t match (right)

If the user clicks the sign_up_button and all of the data is entered correctly, name_

text and pswd_text are saved on a new line in the users.txt file separated by a space

that can be seen in Figure 3-14. If the user closes the dialog before completing the form,

the dialog will close, but the Login window will still remain open.

Chapter 3 adding More FunCtionality with widgets

61

Figure 3-14. The original users.txt file (left) and the updated one (right)

If the form was completed, the user can try to enter their new username and

password into the Login GUI to log in.

 Summary
In this chapter, you experienced building GUIs using a variety of widgets – QPushButton,

QLineEdit, QCheckBox, and QMessageBox. With the different widgets, you were also

able to learn about other important concepts for building GUIs in PyQt, namely, event

handling, communication between widgets with signals and slots, the difference

between windows and dialogs, and how to create applications with multiple windows.

All of these concepts in this chapter lay the framework for creating larger, more

responsive, GUIs.

However, there are still a few more concepts that are essential to learn for creating

GUI applications. In the next chapter, you will learn about another one of those

fundamental topics – layout management.

Chapter 3 adding More FunCtionality with widgets

63
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_4

CHAPTER 4

Learning About Layout
Management
As applications grow in size, organizing and managing all of the widgets’ locations and

sizes in a user interface can become difficult to handle. The good news is that PyQt

makes the process for arranging widgets relatively simple thanks to built-in layout
managers, or classes that handle most of the nitty-gritty details for organizing widgets

in GUIs.

In this chapter, you will

• Learn about PyQt’s layout manager classes and apply them in

numerous GUIs

• Consider which layout manager is best for your application

• Find out how to create complex layouts with nested layouts

• Explore a few different techniques for managing widgets in layout

managers, such as adding spaces or working with size policies

• Use a variety of new classes, including QComboBox, QSpinBox,

QDoubleSpinBox, QButtonGroup, QTextEdit, QDateEdit, and more, to

expand your toolkit and knowledge about creating incredible GUIs

• Expand your experience with previously learned widget classes while

building practical applications

Let’s get to know more about layout managers and how to use them in PyQt.

https://doi.org/10.1007/978-1-4842-7999-1_4

64

 Using Layout Managers in PyQt
Layout management is the useful practice of arranging widgets in GUIs. When

organizing widgets, you’ll need to consider a number of situations, including a widget’s

size and position relative to other widgets, what to do if the window is resized, and how

to handle widgets when they are added or removed. Layout management is also very

important to consider from the user’s perspective. Arranging your widgets intuitively can

help a user quickly navigate a GUI and perform tasks more easily.

The layout manager classes make organizing widgets simpler and allow for child and

parent widgets to communicate, ensuring that widgets utilize the space in a window more

efficiently whenever changes occur. Each layout manager manages widgets and space

differently, but there is a general pattern for setting up and adding widgets to a layout.

Let’s look at a brief example. Suppose you wanted to arrange a QLabel widget above

a QLineEdit widget. First, create your two widget objects:

label = QLabel("Name")

line_edit = QLineEdit()

Notice how neither a parent widget nor the parameter name self is passed as an

argument when creating the widgets. This is because a layout manager will automatically

take care of reparenting widgets to be associated with the parent widget. Or put more

simply, layout managers set the parents for the child widgets.

Next, create an instance of the layout manager for arranging widgets vertically,

QVBoxLayout:

v_box = QVBoxLayout() # Create layout manager instance

v_box.addWidget(label) # Add widgets to the layout

v_box.addWidget(line_edit)

parent_widget.setLayout(v_box) # Set the layout for the parent

To add widgets to the layout, use the addWidget() method and pass the widget to be

added. Then apply the layout used in the parent widget by calling the QWidget method

setLayout(). The parent widget could be a widget, a window, or even a dialog. Layout

managers cannot be parents for widgets; only widgets can be parents for other widgets.

Instead of using setLayout(), you can also pass the parent widget to the layout

manager, like so:

v_box = QVBoxLayout(parent_widget)

Chapter 4 Learning about Layout ManageMent

65

Finally, you can also add layouts to other layouts to create a nested layout. To add a

layout, create a new layout instance and use the method addLayout() to pass the layout

to the parent layout:

h_box = QHBoxLayout()

v_box.addLayout(h_box)

Here, h_box is the child layout and v_box is the parent, and h_box becomes an inner
layout, or a child of a parent layout. This topic is covered later in the “Creating Nested

Layouts” section.

Before moving on, let’s recap what absolute positioning is and its purpose.

 Absolute Positioning
One method for arranging widgets in an interface is absolute positioning, and it involves

specifying the size and position values for a child widget within its parent. This idea

was introduced and used in Chapters 2 and 3 using the QWidget method move(). The

reasoning behind this was so you could gain a fundamental understanding of how to use

the space in a window and also so you can see firsthand the usefulness of using layout

managers.

So why would you want to use absolute positioning? Absolute positioning can be

most useful for setting the position and size values of widgets that are contained within

other widgets, or perhaps for repositioning a window’s location on the desktop.

If you do decide to use absolute positioning, there are a few drawbacks to keep in

mind. First, resizing the main window will not cause the widgets in it to adjust their

size or position. Second, the differences between operating systems, such as fonts and

font sizes, could drastically change the look and layout of the widgets in an interface

on different platforms. Finally, using absolute positioning is expensive in terms of

a developer’s time, as they will need to calculate the exact size and position of each

widget while also tackling issues such as window resizing and the addition or removal of

widgets in the GUI.

In the next section, you’ll look at your first layout manager for arranging widgets

either horizontally or vertically.

Chapter 4 Learning about Layout ManageMent

66

 Horizontal and Vertical Layouts with Box Layouts
Imagine you have a group of widgets that you want to arrange in your window, either

by stacking them on top of one another in a column or by displaying them next to each

other in a single row. The layout manager QBoxLayout is great for handling either of

these situations. QBoxLayout uses the space it is provided from a parent to assign each

widget a box with a certain amount of space. The amount of space is based on a number

of different factors, such as the widget’s minimum allowed size.

While you could use QBoxLayout, PyQt also has two separate convenience classes

that derive from QBoxLayout and deliver functionality based on the desired orientation

of the widgets:

• QHBoxLayout – Arranges widgets horizontally from left to right or

vice versa

• QVBoxLayout – Arranges widgets vertically from top to bottom or

vice versa

Optional parameters can be passed to the addWidget() method for the box layouts

as seen in the following line:

addWidget(widget, stretch, alignment)

The stretch parameter refers to the stretch factor, or how much the widgets will

stretch in relation to other widgets in the row or column. The value for stretch is an int,

where 0 uses a widget's default parameters to set the stretch factor. Widgets are laid out

proportionally, and ones with larger stretch values will use more space. Widgets can also

be aligned in a row or column using the alignment argument.

The following applications provide separate examples for using QHBoxLayout and

QVBoxLayout. They also use signals and slots to create complete, practical programs.

 Explanation for QHBoxLayout
For this project, the GUI in Figure 4-1 consists of three basic widgets: QLabel, QLineEdit,

and QPushButton. These widgets are arranged horizontally using QHBoxLayout.

Chapter 4 Learning about Layout ManageMent

67

Figure 4-1. A simple QHBoxLayout example with each widget arranged
horizontally in the GUI

The application in Listings 4-1 to 4-3 allows for a user to enter a username into the

QLineEdit widget. Editing the text emits a signal that will check if the input is of a certain

length and contains only alphabetical or numerical characters.

To get started, create a new script and copy the code in the basic_window.py script

from Chapter 1 into your new file.

Listing 4-1. Setting up the main window for using QHBoxLayout

horizontal_box.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QLineEdit, QPushButton, QHBoxLayout)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumWidth(500)

 self.setFixedHeight(60)

 self.setWindowTitle("QHBoxLayout Example")

 self.setUpMainWindow()

 self.show()

Chapter 4 Learning about Layout ManageMent

68

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Be sure to import the widget classes along with QHBoxLayout from QtWidgets.

Although the layout manager classes are in the QtWidgets module, they are not widgets

and do not inherit QWidget. Instead, they derive from QLayout, the base class for layout

managers.

You can use a combination of methods to determine how a window can resize. Here,

the window’s minimum width is set with setMinimumWidth() so that it can be resized

horizontally, but the height is fixed using setFixedHeight().

In Listing 4-2, begin by creating the three widgets in setUpMainWindow().

Listing 4-2. The setUpMainWindow() method for using QHBoxLayout

horizontal_box.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 name_label = QLabel("New Username:")

 name_edit = QLineEdit()

 name_edit.setClearButtonEnabled(True)

 name_edit.textEdited.connect(self.checkUserInput)

 self.accept_button = QPushButton("Confirm")

 self.accept_button.setEnabled(False)

 self.accept_button.clicked.connect(self.close)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(name_label)

 main_h_box.addWidget(name_edit)

 main_h_box.addWidget(self.accept_button)

 self.setLayout(main_h_box)

For QLineEdit widgets, the setClearButtonEnabled() method is useful for

displaying a clear button when there is text in the editor field. An example of the clear

button is shown in Figure 4-1.

Chapter 4 Learning about Layout ManageMent

69

Some widgets, such as QPushButton, can be enabled or disabled using the QWidget

method setEnabled(). The accept_button object in this program begins disabled.

Signals and slots can then be used to check if certain parameters are met in order

to switch the widget’s states. An example of this is seen in Listing 4-3, where the

checkUserInput() slot is connected to the clicked signal for accept_button.

Before moving on, take a look at how the QHBoxLayout instance is set up. With layout

managers, widgets are added sequentially. So the first widget added with addWidget()

in QHBoxLayout, name_label, will be the left-most widget. This is followed by name_edit

and accept_button.

Listing 4-3. Code for the checkUserInput() slot

horizontal_box.py

 def checkUserInput(self, text):

 """Check the length and content of name_edit."""

 if len(text) > 0 \

 and all(t.isalpha() or t.isdigit() for t in text):

 self.accept_button.setEnabled(True)

 else: self.accept_button.setEnabled(False)

When the user edits text in name_edit, the textEdited signal will trigger

checkUserInput(). This signal gives us access to the current text. If the length of text is

at least 1 and only contains letters or numbers, then accept_button is enabled.

You can now run the application, and as a test, you should readjust the size of the

window and see how the widgets also stretch to utilize the space. Let’s take a look at

QVBoxLayout next.

 Explanation for QVBoxLayout
Creating a survey like the one in Figure 4-2 to collect data from users can be very useful

for businesses or for research. In the following program, we will take a look at how to use

the QVBoxLayout class to create a simple window that displays a question to the user and

allows them to select an answer.

Chapter 4 Learning about Layout ManageMent

70

Figure 4-2. A simple QVBoxLayout example with each widget arranged vertically
in the GUI

While building the GUI in Listings 4-4 to 4-6, we’ll also take a look at how to organize

and manage groups of buttons. For this GUI, we’ll begin with the basic_window.py script

from Chapter 1.

Listing 4-4. Setting up the main window for using QVBoxLayout

vertical_box.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QCheckBox, QPushButton, QButtonGroup, QVBoxLayout)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QFont

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(350, 200)

 self.setWindowTitle("QVBoxLayout Example")

 self.setUpMainWindow()

 self.show()

Chapter 4 Learning about Layout ManageMent

71

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Be sure to import the necessary classes and set up the main window.

Each of the widgets in Figure 4-2 is arranged vertically in the window. What we’ll

do is start by setting up the text and alignment for the header and question labels in

Listing 4-5.

Listing 4-5. The setUpMainWindow() method for using QVBoxLayout, part 1

vertical_box.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 header_label = QLabel("Chez PyQt6")

 header_label.setFont(QFont("Arial", 18))

 header_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 question_label = QLabel(

 "How would you rate your service?")

 question_label.setAlignment(Qt.AlignmentFlag.AlignTop)

The QCheckBox widgets are also arranged in the window using a layout manager, but

we’ll need to first discuss how to manage groups of related buttons.

 The QButtonGroup Class

You may often have a few checkboxes or buttons that need to be grouped together to

make it easier to manage them. Thankfully, PyQt has the QButtonGroup class to help

manage associated buttons while also making them mutually exclusive. This can be

helpful if you only want one checkbox to be checked at a time.

To add buttons to QButtonGroup and to a window, you can use the following order:

 1. Create a QButtonGroup instance and make it a member of a class,

meaning create an instance variable of the class, that is, self.

button_group, or pass a parent object as an argument, that is,

button_group = QButtonGroup(self).

Chapter 4 Learning about Layout ManageMent

72

 2. Create the button or checkbox objects that will be added to the

button group from step 1.

 3. Add the buttons from step 2 to the button group using the

QButtonGroup method addButton().

 4. Connect all buttons in a group to one signal, such as the

QButtonGroup signal buttonClicked.

 5. Add the widgets created in step 2 to a layout manager.

QButtonGroup is not actually a widget, but an abstract container around the buttons

added to it. Therefore, you can’t actually add QButtonGroup to a layout. The procedure

for adding checkboxes to QButtonGroup is demonstrated in Listing 4-6.

Listing 4-6. The setUpMainWindow() method for using QVBoxLayout, part 2

vertical_box.py

 ratings = ["Satisfied", "Average", "Not Satisfied"]

 ratings_group = QButtonGroup(self)

 ratings_group.buttonClicked.connect(

 self.checkboxClicked)

 self.confirm_button = QPushButton("Confirm")

 self.confirm_button.setEnabled(False)

 self.confirm_button.clicked.connect(self.close)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(header_label)

 main_v_box.addWidget(question_label)

 for cb in range(len(ratings)):

 rating_cb = QCheckBox(ratings[cb])

 ratings_group.addButton(rating_cb)

 main_v_box.addWidget(rating_cb)

 main_v_box.addWidget(self.confirm_button)

 self.setLayout(main_v_box)

Chapter 4 Learning about Layout ManageMent

73

 def checkboxClicked(self, button):

 """Check if a QCheckBox in the button group has

 been clicked."""

 print(button.text())

 self.confirm_button.setEnabled(True)

Here, we create a QButtonGroup, ratings_group, to manage the three QCheckBox

widgets. If any of the mutually exclusive checkboxes are selected, it’ll emit a signal

that triggers checkboxClicked(). The slot simply demonstrates how to check which

checkbox is checked and enables confirm_button.

The QCheckBox objects are created by iterating over the values in the ratings list. They

are also added to both the button group and the window’s layout manager, main_v_box,

in the same loop.

 Creating Nested Layouts
Sometimes, a single layout manager won’t be able to suit all of your needs as your

interfaces become more complex. Fortunately, handling this matter isn’t too difficult

with PyQt as you can arrange layouts inside of other layouts to solve intricate

arrangement issues.

Previous examples have demonstrated how to apply layouts to a widget using the

setLayout() method, thereby creating the parent layout. For the GUI in Figure 4-3, you’ll

notice how some widgets are arranged vertically, while others are arranged horizontally.

The widgets arranged side by side are placed in inner layouts, and those layouts are then

added to the parent layout using the layout manager method addLayout().

Figure 4-3. Widgets arranged using a combination of layout managers

Chapter 4 Learning about Layout ManageMent

74

While this example focuses on using the box layout managers, it is important to

also keep in mind that you can combine any of the layout managers to create your own

nested layouts.

 Explanation for Nested Layouts
In addition to constructing nested layouts in this program, you will also learn about two

new types of widgets, the spin box and the combo box, that are both useful for selecting a

single option from a set of values.

Listing 4-7 begins by importing the classes we’ll need and setting up the

MainWindow class.

Listing 4-7. Setting up the main window for using nested layouts

nested.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QComboBox, QSpinBox, QHBoxLayout, QVBoxLayout)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QFont

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(400, 160)

 self.setWindowTitle("Nested Layout Example")

 self.setUpMainWindow()

 self.show()

Chapter 4 Learning about Layout ManageMent

75

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

With the MainWindow class started, let’s begin building the setUpMainWindow()

method and look at two new widgets that we’ll use in this GUI.

 The QSpinBox and QComboBox Widgets

Rather than using a QLineEdit widget for inputting information, sometimes, you

may want a user to only be allowed to select from a list of predetermined values or

numerical ranges.

QSpinBox creates an object that is similar to a text box but allows the user to select

integer values by either typing a value into the widget or by clicking on up and down

arrows. You can also edit the range of the values, set the step size when the arrow

is clicked, set a starting value, or even add prefixes or suffixes in the box. There are

classes similar to QSpinBox that provide similar functionality for different situations.

QDoubleSpinBox is used for selecting floating-point numbers. QDateTimeEdit or one of

its variations is useful for selecting date and time values.

The QComboBox widget displays a drop-down list of options for the user to select

when a user clicks on the widget’s arrow button. Combo boxes are handy for displaying a

large amount of options in the least amount of space.

In Listing 4-8, we will take a look at how to create both kinds of widgets in the

setUpMainWindow() method.

Listing 4-8. Creating the widgets in setUpMainWindow()

nested.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 info_label = QLabel(

 "Select 2 items for lunch and their prices.")

 info_label.setFont(QFont("Arial", 16))

 info_label.setAlignment(Qt.AlignmentFlag.AlignCenter)

Chapter 4 Learning about Layout ManageMent

76

 # Create a list of food items and two separate

 # QComboBox widgets to display all of the items

 food_list = ["egg", "turkey sandwich", "ham sandwich",

 "cheese", "hummus", "yogurt", "apple", "banana",

 "orange", "waffle", "carrots", "bread", "pasta",

 "crackers", "pretzels", "coffee", "soda", "water"]

 food_combo1 = QComboBox()

 food_combo1.addItems(food_list)

 food_combo2 = QComboBox()

 food_combo2.addItems(food_list)

 # Create two QSpinBox widgets to display prices

 self.price_sb1 = QSpinBox()

 self.price_sb1.setRange(0, 100)

 self.price_sb1.setPrefix("$")

 self.price_sb1.valueChanged.connect(

 self.calculateTotal)

 self.price_sb2 = QSpinBox()

 self.price_sb2.setRange(0, 100)

 self.price_sb2.setPrefix("$")

 self.price_sb2.valueChanged.connect(

 self.calculateTotal)

We create two separate combo boxes, food_combo1 and food_combo2, and add the

list of items that we want to be displayed in each of them using the addItems() method.

After that, two separate spin boxes are created: price_sb1 and price_sb2.

The setRange() method is used to set upper and lower boundaries for a spin box,

and setPrefix() can be used to display other text inside the text box, in this case, a

dollar sign. This can be helpful to give the user more information about the widget’s

purpose.

Finally, as we change the values in the spin boxes, they both send a signal that is

connected to the calculateTotal() method. This will dynamically update the value for

totals_label that is instantiated in Listing 4-9.

Chapter 4 Learning about Layout ManageMent

77

 Combining Layouts and Arranging Widgets

The process of combining layouts involves placing one type of layout manager inside

of another type. For this example, we’ll be combining the two box layouts to gain the

benefit of both horizontal and vertical arrangements.

In Listing 4-9, we can arrange the spin boxes and combo boxes from Listing 4-8 into

separate horizontal layouts, item1_h_box and item2_h_box.

Note Since the two QComboBox objects and the two QSpinBox objects each
contain the same values, you may have the urge to just try and use them over
again rather than creating separate instances. this won’t work. When you add an
object to a layout, the parent widget takes ownership of the object. this means you
cannot add the same object to more than one layout. instead, you’ll need to create
a new instance.

Listing 4-9. Creating the nested layout in setUpMainWindow()

nested.py

 # Create two horizontal layouts for the QComboBox

 # and QSpinBox widgets

 item1_h_box = QHBoxLayout()

 item1_h_box.addWidget(food_combo1)

 item1_h_box.addWidget(self.price_sb1)

 item2_h_box = QHBoxLayout()

 item2_h_box.addWidget(food_combo2)

 item2_h_box.addWidget(self.price_sb2)

 self.totals_label = QLabel("Total Spent: $")

 self.totals_label.setFont(QFont("Arial", 16))

 self.totals_label.setAlignment(

 Qt.AlignmentFlag.AlignRight)

 # Organize widgets and layouts in the main window

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(info_label)

Chapter 4 Learning about Layout ManageMent

78

 main_v_box.addLayout(item1_h_box)

 main_v_box.addLayout(item2_h_box)

 main_v_box.addWidget(self.totals_label)

 # Set the layout for the main window

 self.setLayout(main_v_box)

An additional label, totals_label, will display the summation of the values in the

QSpinBox widgets.

At this point, you will have two labels and two QHBoxLayout instances that need to be

added to the window. You’ll need to create a parent layout to hold these objects. Here,

the parent layout is main_v_box. The labels are added with addWidget(), and the layouts

are added with addLayout(). This arrangement is depicted in Figure 4-4, where the

parent QVBoxLayout is represented with solid lines and the inner QHBoxLayout instances

are depicted with dashed lines.

Figure 4-4. Visualization of the nested layout

The final task in Listing 4-10 is to create the slot that calculates the values from the

spin boxes and updates the text for totals_label.

Listing 4-10. Code for the calculateTotal() slot

nested.py

 def calculateTotal(self, value):

 """Calculate the total price and update

 totals_label."""

Chapter 4 Learning about Layout ManageMent

79

 total = self.price_sb1.value() + \

 self.price_sb2.value()

 self.totals_label.setText(f"Total Spent: ${total}”)

At this point, you have finished learning the basics for working with box layouts. Let’s

move on and take a look at another built-in layout manager.

 Arranging Widgets in Grids with QGridLayout
The QGridLayout layout manager is used to arrange widgets in rows and columns similar

to a spreadsheet or matrix. This layout manager takes the space within its parent window

or widget and divides it up according to the sizes of the widgets within that row (or

column). Adding space between widgets, creating a border, or stretching widgets across

multiple rows or columns is also possible.

Understanding how to add and manipulate widgets using QGridLayout is fairly

straightforward. The index values in the grid start at (0,0), which is the top left-most cell.

The first value is the row, and the second is the column. To add a widget underneath it

(the next row), simply add 1 to the first value, (1,0). To keep moving down rows, keep

increasing the first value. To move across columns, increase the second value.

The addWidget() method for QGridLayout has two forms. The first is shown in the

following line:

addWidget(widget, row, column, alignment)

Here, the widget is added to the specified row and column with an optional

alignment. The other form allows for widgets to extend across multiple rows, columns,

or both:

addWidget(widget, fromRow, fromColumn, rowSpan, columnSpan, alignment)

The fromRow and fromColumn arguments specify the starting row and column,

respectively. The rowSpan and columnSpan arguments take integer values and define how

many rows and columns a widget will take up, respectively.

For this section, you’ll find out how to use GridLayout to make the daily planner GUI

seen in Figure 4-5.

Chapter 4 Learning about Layout ManageMent

80

Figure 4-5. A simple daily planner that uses QGridLayout to organize widgets

Some to-do lists are broken down by hours of the day, by importance of goals, or by

the priority of tasks one may need to do for that day, week, or even month. Once a goal is

complete, we need some way to check off a task or remove it.

The application is composed of three parts: an area to write today’s most important

task, a place to jot down notes, and a section to write daily tasks. We’ll also take a brief

look at some new PyQt classes for handling large areas of text and for working with dates.

 Explanation for QGridLayout
We can begin building the example for using QGridLayout by importing the classes we

need and building the MainWindow class in Listing 4-11. You can use the basic_window.py

script from Chapter 1 to get you started.

Listing 4-11. Setting up the main window for using QGridLayout

grid.py

Import necessary modules

import sys, json

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QLineEdit, QCheckBox, QTextEdit, QGridLayout)

Chapter 4 Learning about Layout ManageMent

81

from PyQt6.QtCore import Qt, QDate

from PyQt6.QtGui import QFont

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 300)

 self.setWindowTitle("QGridLayout Example")

 self.setUpMainWindow()

 self.loadWidgetValuesFromFile()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

To continue building the daily planner interface, we’ll need to learn about a widget

class that can handle large fields of text.

 The QTextEdit Widget

When a user needs an area for entering or editing more than one line of text at a time,

the QTextEdit class is well suited for modifying either plain or rich text and includes

built-in editing features, such as copy, paste, and cut. The widget can handle characters

or paragraphs of text. Paragraphs are simply long strings that are word-wrapped into the

widget and end with a newline character. QTextEdit is also useful for displaying lists,

images, and tables or providing an interface for displaying text using HTML.

We can start building the widgets on the left side of the main window in Listing 4-12,

beginning with the header label, the QTextEdit objects, and their corresponding labels.

Chapter 4 Learning about Layout ManageMent

82

Listing 4-12. The setUpMainWindow() method for using QGridLayout, part 1

grid.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 header_label = QLabel("Simple Daily Planner")

 header_label.setFont(QFont("Arial", 20))

 header_label.setAlignment(Qt.AlignmentFlag.AlignLeft)

 # Create widgets for the left side of the window

 today_label = QLabel("· Today's Focus")

 today_label.setFont(QFont("Arial", 14))

 self.today_tedit = QTextEdit()

 notes_label = QLabel("· Notes")

 notes_label.setFont(QFont("Arial", 14))

 self.notes_tedit = QTextEdit()

The widgets are now ready to be added to a layout manager.

 Adding Widgets and Spanning Rows and Columns in QGridLayout

Since widgets will be placed in a grid-like structure, when you add a new object to the

layout, you must specify the row and column values as parameters of the addWidget() or

addLayout() method. Take a look at Listing 4-13 to see an example of this.

Listing 4-13. The setUpMainWindow() method for using QGridLayout, part 2

grid.py

 # Organize the left side widgets into column 0

 # of the QGridLayout

 self.main_grid = QGridLayout()

 self.main_grid.addWidget(header_label, 0, 0)

 self.main_grid.addWidget(today_label, 1, 0)

 self.main_grid.addWidget(self.today_tedit, 2, 0, 3, 1)

 self.main_grid.addWidget(notes_label, 5, 0)

 self.main_grid.addWidget(self.notes_tedit, 6, 0, 3, 1)

Chapter 4 Learning about Layout ManageMent

83

The header_label object is added to the main_grid layout at the position where

row equals 0 and column equals 0, which is also the top-left corner. Then today_label

is added directly below header_label by increasing the row value to 1 and leaving the

column value equal to 0. The today_tedit object is added to row 2.

What happens if you have a widget in a row or a column that needs to take up more

space in the vertical or horizontal direction? Let’s look at two different ways for handling

these situations.

The first approach involves skipping a few rows or columns to allow certain kinds

of widgets, such as QTextEdit, to take up the additional space. If you refer to Figure 4-5,

you can see that the QTextEdit widgets use more room in the window than the QLabel

or QLineEdit widgets. To allow today_tedit to stretch across three rows, the following

widget, notes_label, is placed in row index 5.

The second technique to have widgets utilize space in QGridLayout is to specify the

number of rows and columns that you want a widget to span. Spanning can be thought

of as stretching a widget horizontally or vertically to take advantage of space and help

with window organization. Have a look at the following line:

self.main_grid.addWidget(self.today_tedit, 2, 0, 3, 1)

The extra two parameters at the end, 3 and 1, tell the layout manager that the widget

will span three rows and one column. This causes the widget to stretch vertically. The

right side of the window is handled in Listing 4-14.

Listing 4-14. The setUpMainWindow() method for using QGridLayout, part 3

grid.py

 # Create widgets for the right side of the window

 today = QDate.currentDate().toString(

 Qt.DateFormat.ISODate)

 date_label = QLabel(today)

 date_label.setFont(QFont("Arial", 18))

 date_label.setAlignment(Qt.AlignmentFlag.AlignRight)

 todo_label = QLabel("· To Do")

 todo_label.setFont(QFont("Arial", 14))

Chapter 4 Learning about Layout ManageMent

84

 # Organize the right side widgets into columns 1 and 2

 # of the QGridLayout

 self.main_grid.addWidget(date_label, 0, 2)

 self.main_grid.addWidget(todo_label, 1, 1, 1, 2)

 # Create 7 rows, from indexes 2-8

 for row in range(2, 9):

 item_cb = QCheckBox()

 item_edit = QLineEdit()

 self.main_grid.addWidget(item_cb, row, 1)

 self.main_grid.addWidget(item_edit, row, 2)

 # Set the layout for the main window

 self.setLayout(self.main_grid)

The date that appears in the top right of the window in Figure 4-5 will change

depending upon what day the user is opening the application. This is thanks to the QDate

class. The current date is retrieved using QDate.currentDate(), converted to a readable

string using toString(), and passed to the variable today. The enum Qt.DateFormat is

used to set the format for how the date is presented to the user. There are a few different

ways to format dates in PyQt, such as TextDate for textual dates or ISODate that uses the

ISO 8601 standard style. The today string is displayed in the QLabel, date_label.

For the group of seven QCheckBox and QLineEdit widgets that form the list of to-

do items, a for loop is used to create each object and add them to the correct row and

column in the main_grid.

We could stop here, but let’s go one step further and find out how to use signals and

slots to save the values of the text-editing widgets and determine which to-do items to

keep for the next day. This can be done by looking at the states of the QCheckBox widgets.

To do this, we’ll need to find out how to locate child widgets once they have been added

to a layout manager.

 Finding Child Widgets in a Layout

A common task is to collect the values from widgets, perhaps to update another widget’s

information or to save data when closing an application. In many cases, instance

variables created with self can be used throughout a class to modify and update

values. However, as we saw in Listing 4-14, the QCheckBox and QLineEdit widgets were

iteratively added to the layout without a clear variable name.

Chapter 4 Learning about Layout ManageMent

85

The QWidget class already has methods for finding children widgets, but for this

example, we’ll learn how child items are located in layout managers, specifically

QGridLayout.

For some applications, it may be important to save the information in the

window. When a user closes the daily planner, a record is kept of the previous day’s

notes and unfinished tasks. The MainWindow method for handling these operations,

saveWidgetValues(), is constructed in Listing 4-15.

Listing 4-15. Code for the saveWidgetValues() method

grid.py

 def saveWidgetValues(self):

 """Collect and save the widget values."""

 details = {"focus": self.today_tedit.toPlainText(),

 "notes": self.notes_tedit.toPlainText()}

 remaining_todo = []

 # Check the values of the QCheckBox widgets

 for row in range(2, 9):

 # Retrieve the QLayoutItem object

 item = self.main_grid.itemAtPosition(row, 1)

 # Retrieve the widget (QCheckBox)

 widget = item.widget()

 if widget.isChecked() == False:

 # Retrieve the QLayoutItem object

 item = self.main_grid.itemAtPosition(row, 2)

 # Retrieve the widget (QLineEdit)

 widget = item.widget()

 text = widget.text()

 if text != "":

 remaining_todo.append(text)

 # Save text from QLineEdit widgets

 details["todo"] = remaining_todo

 with open("details.txt", "w") as f:

 f.write(json.dumps(details))

Chapter 4 Learning about Layout ManageMent

86

 def closeEvent(self, event):

 """Save widget values when closing the window."""

 self.saveWidgetValues()

The values for the QTextEdit and QLineEdit widgets are stored in a Python dict,

simplifying the process for saving data in JSON format. In order to return plain text for

both today_tedit and notes_tedit, use the QTextEdit method toPlainText(). If you

need to return rich text, use toHtml().

When widgets are added to layouts, they are added as QLayoutItem objects. The

QGridLayout method itemAtPosition() is used to retrieve items at a given row and

column value. By iterating over row indexes 2 to 8, we can find out which QCheckBox

widgets are checked with isChecked().

Tip For box layouts and QFormLayout, you can use the itemAt(index)
method, where index is the widget’s index in the layout. note that this returns a
QWidgetItem object and not the widget itself. therefore, you’ll need to call the
widget() method on the returned item to interact with the widget.

Tasks that are completed should be checked. So if a check box is not checked, we’ll

save the text from the corresponding QLinedEdit in column 2 so long as the QTextEdit

field isn’t empty. Lastly, the details dictionary is written to a text file. All of this will

occur when the window closes using closeEvent().

Loading data into the widgets from a previous session is handled in Listing 4-16. If

this is the first time that the application has been run, the try clause is skipped, and the

details.txt file is created in the except clause.

Listing 4-16. Code for the saveWidgetValues() method

grid.py

 def loadWidgetValuesFromFile(self):

 """Retrieve previous values from the last session."""

 # Check if file exists first

Chapter 4 Learning about Layout ManageMent

87

 try:

 with open("details.txt", "r") as f:

 details = json.load(f)

 # Retrieve and set values for the widgets

 self.today_tedit.setText(details["focus"])

 self.notes_tedit.setText(details["notes"])

 # Set the text for QLineEdit widgets

 for row in range(len(details["todo"])):

 # Retrieve the QLayoutItem object

 item = self.main_grid.itemAtPosition(

 row + 2, 2)

 # Retrieve the widget (QLineEdit)

 widget = item.widget()

 widget.setText(details["todo"][row])

 except FileNotFoundError as error:

 # Create the file since it doesn't exist

 f = open("details.txt", “w")

Otherwise, the text file is loaded using json.load(). The text values for the

QTextEdit widgets and the QLineEdit from the previous session are set in the try clause.

QLineEdit objects are found using itemAtPosition().

 Building Forms with QFormLayout
For situations where you need to create a form to collect information from a user,

PyQt provides the QFormLayout class. It is a layout manager that arranges its children

widgets into a two-column layout, the left column consisting of labels and the right one

consisting of entry field widgets such as QLineEdit or QSpinBox. The QFormLayout class

makes designing these kinds of GUIs very convenient.

For the application in Figure 4-6, let’s take a look at creating a form that someone

could use to set up an appointment.

Chapter 4 Learning about Layout ManageMent

88

Figure 4-6. An application form created with QFormLayout

In this application, you’ll also be introduced to the class for matching strings using

regular expressions in PyQt, which has similar functionality to the Python module re or

the third-party module regex.

 Explanation for QFormLayout
The application form consists of a number of different widgets, including QLabel,

QLineEdit, QComboBox, QTextEdit, and QPushButton. A new class, QDateEdit, is similar

to QSpinBox but provides specific functionality for selecting and editing dates.

Chapter 4 Learning about Layout ManageMent

89

Let’s use the basic_window.py script for the basis of the code in Listing 4-17 and get

started by importing the necessary PyQt classes. This GUI also contains a few instances

of nested layouts, so QHBoxLayout is included.

Listing 4-17. Setting up the main window for using QFormLayout

form.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QDateEdit, QLineEdit, QTextEdit, QComboBox,

 QFormLayout, QHBoxLayout)

from PyQt6.QtCore import Qt, QRegularExpression, QDate

from PyQt6.QtGui import QFont, QRegularExpressionValidator

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 400)

 self.setWindowTitle("QFormLayout Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

When instantiating the editing fields, be aware that you won’t need to create the

QLabel widget that typically precedes them. With QFormLayout, two widgets can be

added in a row. For now, we’ll just set up the text-editing widgets in Listing 4-18.

Chapter 4 Learning about Layout ManageMent

90

Listing 4-18. The setUpMainWindow() method for using QFormLayout, part 1

form.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 header_label = QLabel("Appointment Form")

 header_label.setFont(QFont("Arial", 18))

 header_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 self.first_name_edit = QLineEdit()

 self.first_name_edit.setPlaceholderText("First")

 self.first_name_edit.textEdited.connect(

 self.clearText)

 self.last_name_edit = QLineEdit()

 self.last_name_edit.setPlaceholderText("Last")

 self.last_name_edit.textEdited.connect(self.clearText)

 # Create horizontal layout for names

 name_h_box = QHBoxLayout()

 name_h_box.addWidget(self.first_name_edit)

 name_h_box.addWidget(self.last_name_edit)

Even though a Name label exists in front of the first_name_edit and last_name_edit

widgets in Figure 4-6, the label has not been created yet. The two QLineEdit widgets are

added to a QHBoxLayout manager. Building the clearText() slot is handled in Listing 4-22.

For the second part of setUpMainWindow() in Listing 4-19, more of the application

form’s widgets are instantiated.

Listing 4-19. The setUpMainWindow() method for using QFormLayout, part 2

form.py

 # Create additional widgets to be added in the window

 gender_combo = QComboBox()

 gender_combo.addItems(["Male", "Female"])

 self.phone_edit = QLineEdit()

 self.phone_edit.setInputMask("(999) 999-9999;_")

 self.phone_edit.textEdited.connect(self.clearText)

Chapter 4 Learning about Layout ManageMent

91

 self.birthdate_edit = QDateEdit()

 self.birthdate_edit.setDisplayFormat("MM/dd/yyyy")

 self.birthdate_edit.setMaximumDate(

 QDate.currentDate())

 self.birthdate_edit.setCalendarPopup(True)

 self.birthdate_edit.setDate(QDate.currentDate())

The widgets in the previous block of code ask the user to input their gender, phone

number, and birthdate using a variety of different widget classes. The gender_combo

object is a simple QComboBox.

Any type of character can be typed into the QLineEdit entry field. However, if you

want to limit the type, size, or manner in which characters can be input, then you can

create an input mask by calling the setInputMask() method. The mask characters in

this GUI only allow a user to input integers from 0 to 9. The end of the sequence, ;_,

terminates the input mask and sets empty characters to _.

The QDateEdit instance’s format for visualizing a date is set with

setDisplayFormat(). The maximum range of the widget is set to the date the user opens

the application using QDate.currentDate(). QDateEdit has a convenience function,

setCalendarPopup(), that will allow a calendar to appear whenever the arrow in the

widget is clicked. The initial date that appears in the widget is set with setDate().

The GUI’s remaining widgets are set up in Listing 4-20.

Listing 4-20. The setUpMainWindow() method for using QFormLayout, part 3

form.py

 self.email_edit = QLineEdit()

 self.email_edit.setPlaceholderText(

 "<username>@<domain>.com")

 reg_opt = QRegularExpression()

 regex = QRegularExpression(

 "\\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[com]{3}\\b",

 reg_opt.PatternOption.CaseInsensitiveOption)

 self.email_edit.setValidator(

 QRegularExpressionValidator(regex))

 self.email_edit.textEdited.connect(self.clearText)

 extra_info_tedit = QTextEdit()

Chapter 4 Learning about Layout ManageMent

92

 self.feedback_label = QLabel()

 submit_button = QPushButton("SUBMIT")

 submit_button.setMaximumWidth(140)

 submit_button.clicked.connect(

 self.checkFormInformation)

 # Create horizontal layout for last row of widgets

 submit_h_box = QHBoxLayout()

 submit_h_box.addWidget(self.feedback_label)

 submit_h_box.addWidget(submit_button)

Another type of information a user will typically need to include in a form is their

email address. A simple QLineEdit would be sufficient, but to handle matching the

user’s input to the general format of an email address, we can use regular expressions.

The QRegularExpression class provides the pattern and syntax capabilities we need.

Note in some documentation, you may come across a Qt class, QRegExp,
that has some similarities to QRegularExpression. however, the class is not
included in pyQt6 as QRegularExpression contains many improvements over
QRegExp.

The expression passed to the regex instance is a basic expression for email

addresses. The QRegularExpression.PatternOption enum is used to specify ways that

strings can be interpreted, such as CaseInsensitiveOption for case insensitivity or

DotMatchesEverythingOption if you need a dot, ., in the pattern string to match any

character.

A validator is used with some editing widgets to confirm that their contents match

constraints specified by the developer. QRegularExpressionValidator checks if the

string passed to it matches the specified regular expression, in this case, the regex

instance.

Lastly, we need to create a few more widgets. The QLabel feedback_label is used to

update users about incorrect or missing information. The label and submit_button are

added to the submit_h_box layout.

Chapter 4 Learning about Layout ManageMent

93

 Adding Widgets and Layouts to QFormLayout

Adding widgets to QFormLayout is different from box layouts and QGridLayout. First

of all, the method addRow() is used instead of addWidget(). This is also the case when

adding other layouts. Secondly, while it is possible to nest layouts into QFormLayout, the

layout still fits within the two-column structure.

Let’s wrap up building setUpMainWindow() by creating a QFormLayout instance

and setting some parameters. First, create a QFormLayout object, main_form, for the

main window.

Listing 4-21. Arranging widgets in form layout in setUpMainWindow(), part 4

form.py

 # Organize widgets and layouts in QFormLayout

 main_form = QFormLayout()

 main_form.setFieldGrowthPolicy(

 main_form.FieldGrowthPolicy.AllNonFixedFieldsGrow)

 main_form.setFormAlignment(

 Qt.AlignmentFlag.AlignHCenter | \

 Qt.AlignmentFlag.AlignTop)

 main_form.setLabelAlignment(

 Qt.AlignmentFlag.AlignLeft)

 main_form.addRow(header_label)

 main_form.addRow("Name", name_h_box)

 main_form.addRow("Gender", gender_combo)

 main_form.addRow("Date of Birth", self.birthdate_edit)

 main_form.addRow("Phone", self.phone_edit)

 main_form.addRow("Email", self.email_edit)

 main_form.addRow(QLabel("Comments or Messages"))

 main_form.addRow(extra_info_tedit)

 main_form.addRow(submit_h_box)

 # Set the layout for the main window

 self.setLayout(main_form)

Chapter 4 Learning about Layout ManageMent

94

Without specifying any parameters or styles, the QFormLayout class will take

advantage of a system’s native style. To work around this and ensure that the form layout

will look the same on different systems, we can set a few parameters.

The enum QFormLayout.FieldGrowthPolicy decides how widgets stretch in the

layout. The AllNonFixedFieldsGrow flag ensures that field widgets grow horizontally to

fill extra space. The setFormAlignment() method is used to specify how to align a form’s

contents, and setLabelAlignment() defines the alignment for the labels.

There are a few different ways to add widgets or layouts to a form layout with

addRow(). The following list describes them:

• addRow(QWidget(), QWidget()) – Adds two widgets to a row,

where the first widget is a label and the second is a field widget. The

first QWidget is typically a QLabel, but it is possible to add other

widget types.

• addRow(QWidget(), QLayout()) – Adds a label widget and a layout

to a row.

• addRow(string, QWidget()) – Adds a string and a field to a row.

• addRow(string, QLayout()) – Adds a string and a layout to a row.

• addRow(QWidget()) – Adds a single widget to a layout.

• addRow(QLayout()) – Nests a single layout to the form.

Examples of a few of these can be seen in Listing 4-21. By adding a QLabel and a field

widget such as QLineEdit on the same row, you can create a buddy for the QLabel.

The slots that the widgets in the form are connected to are created in Listing 4-22.

The clearText() slot is used to clear feedback_label whenever the text is edited in one

of the form’s field widgets.

Listing 4-22. Code for clearText() and checkFormInformation() slots

form.py

 def clearText(self, text):

 """Clear the text for the QLabel that provides

 feedback."""

 self.feedback_label.clear()

Chapter 4 Learning about Layout ManageMent

95

 def checkFormInformation(self):

 """Demonstrates a few cases for validating user

 input."""

 if self.first_name_edit.text() == "" or \

 self.last_name_edit.text() == "":

 self.feedback_label.setText(

 "[INFO] Missing names.")

 elif self.phone_edit.hasAcceptableInput() == False:

 self.feedback_label.setText(

 "[INFO] Phone number entered incorrectly.")

 elif self.email_edit.hasAcceptableInput() == False:

 self.feedback_label.setText(

 "[INFO] Email entered incorrectly.”)

Feedback comes in many forms. In checkFormInformation(), whenever the user

presses submit_button in the bottom of the GUI, a series of if conditions are checked. If

certain fields don’t have acceptable input, then a corresponding message will display in

feedback_label.

The next section covers the final built-in layout manager.

 Managing Pages with QStackedLayout
For some interfaces, it may be necessary to only show some widgets until certain tasks

are complete or to organize widgets into groups and remove clutter. A common example

of this is a web browser, where tabs at the top of the window help to separate the

different websites.

One way to accomplish this type of layout is by stacking widgets on top of each other

using QStackedLayout. A single widget added to QStackedLayout serves as a page, and

other widgets can be appended to that page. With a stacked layout, you also need to

include some means to switch between the different pages. Take a look at Figure 4-7 and

you will see a QComboBox at the top of the window for changing pages.

Chapter 4 Learning about Layout ManageMent

96

Figure 4-7. An example of multiple pages in a single window. The image of the cat
is from https://pixabay.com

Tip pyQt has a convenience class, QStackedWidget, which provides the
same functionality as QStackedLayout with the additional benefit of QWidget
methods. another widget, QTabWidget (covered in Chapter 6), provides the tabs.

Each page is added to QStackedLayout using addWidget(). Pages that have been

added are managed by an internal list of widgets, and accessing each page or widget can

be accomplished with the following methods:

• currentIndex() – Returns the index of the visible page. Pages have

index values with the beginning index being 0.

• currentWidget() – Retrieves the widget of the visible page.

If a page also contains multiple widgets, those child widgets can be accessed through

the widget that currentWidget() returns.

One final note, it is possible to create a dynamic stacked layout where pages are

inserted with insertWidget(index, widget) or removed with removeWidget(widget).

Chapter 4 Learning about Layout ManageMent

https://pixabay.com

97

 Explanation for QStackedLayout
Make sure to download the images folder from the GitHub repository. Starting with the

basic_window.py script like before, import the classes like in Listing 4-23 from PyQt and

update the MainWindow class for this example.

Listing 4-23. Setting up the main window for using QStackedLayout

stacked.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QLineEdit, QTextEdit, QComboBox, QSpinBox, QDoubleSpinBox,

 QStackedLayout, QFormLayout, QVBoxLayout)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QPixmap

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(300, 340)

 self.setWindowTitle("QStackedLayout Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The first widget in Listing 4-24 is the QComboBox object for switching pages. The

combo box displays the titles for each page and is connected to the activated signal.

The signal is emitted whenever a user selects an item in the QComboBox, and the signal

passes the index of the selected page. The switchPage() method is set up in Listing 4-27.

Chapter 4 Learning about Layout ManageMent

98

Listing 4-24. The setUpMainWindow() method for using QStackedLayout, part 1

stacked.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create and connect the combo box to switch pages

 page_combo = QComboBox()

 page_combo.addItems(["Image", "Description",

 "Additional Info"])

 page_combo.activated.connect(self.switchPage)

 # Create the Image page (Page 1)

 profile_image = QLabel()

 pixmap = QPixmap("images/norwegian.jpg")

 profile_image.setPixmap(pixmap)

 profile_image.setScaledContents(True)

Page one contains a single QLabel that displays a QPixmap. The QLabel method

setScaledContents() tells the label to use all available space to display its contents.

For page two, we’ll use some widgets to display textual information about the image

on page one. The widgets are organized in a QFormLayout in Listing 4-25.

Listing 4-25. The setUpMainWindow() method for using QStackedLayout, part 2

stacked.py

 # Create the Profile page (Page 2)

 pg2_form = QFormLayout()

 pg2_form.setFieldGrowthPolicy(

 pg2_form.FieldGrowthPolicy.AllNonFixedFieldsGrow)

 pg2_form.setFormAlignment(

 Qt.AlignmentFlag.AlignHCenter |

 Qt.AlignmentFlag.AlignTop)

 pg2_form.setLabelAlignment(

 Qt.AlignmentFlag.AlignLeft)

Chapter 4 Learning about Layout ManageMent

99

 pg2_form.addRow("Breed:",

 QLabel("Norwegian Forest cat"))

 pg2_form.addRow("Origin:", QLabel("Norway"))

 pg2_form.addRow(QLabel("Description:"))

 default_text = """Have a long, sturdy body, long legs

 and a bushy tail. They are friendly, intelligent,

 and generally good with people."""

 pg2_form.addRow(QTextEdit(default_text))

 pg2_container = QWidget()

 pg2_container.setLayout(pg2_form)

Refer to the “Building Forms with QFormLayout” section for information about

how to arrange widgets in QFormLayout. The layout, however, cannot be added to

QStackedLayout. Instead, a container widget is created to group all of these widgets

together. QWidget can serve as a basic container for other widgets. The layout is then

applied to the container using setLayout().

Page three is created in a similar fashion in Listing 4-26, but this time allows for the

user to input information using some field widgets.

Listing 4-26. The setUpMainWindow() method for using QStackedLayout, part 3

stacked.py

 # Create the About page (Page 3)

 pg3_form = QFormLayout()

 pg3_form.setFieldGrowthPolicy(

 pg3_form.FieldGrowthPolicy.AllNonFixedFieldsGrow)

 pg3_form.setFormAlignment(

 Qt.AlignmentFlag.AlignHCenter |

 Qt.AlignmentFlag.AlignTop)

 pg3_form.setLabelAlignment(

 Qt.AlignmentFlag.AlignLeft)

 pg3_form.addRow(QLabel("Enter your cat's info."))

 pg3_form.addRow("Name:", QLineEdit())

 pg3_form.addRow("Color:", QLineEdit())

Chapter 4 Learning about Layout ManageMent

100

 age_sb = QSpinBox()

 age_sb.setRange(0, 30)

 pg3_form.addRow("Age:", age_sb)

 weight_dsb = QDoubleSpinBox()

 weight_dsb.setRange(0.0, 30.0)

 pg3_form.addRow("Weight (kg):", weight_dsb)

 pg3_container = QWidget()

 pg3_container.setLayout(pg3_form)

A new widget, QDoubleSpinBox, allows for users to select from a range of floating

point values. The three widgets, the label and the two QWidget objects acting as

containers, are added to a QStackedLayout object in Listing 4-27.

Listing 4-27. Arrange widgets in setUpMainWindow() using QStackedLayout

stacked.py

 # Create the stacked layout and add pages

 self.stacked_layout = QStackedLayout()

 self.stacked_layout.addWidget(profile_image)

 self.stacked_layout.addWidget(pg2_container)

 self.stacked_layout.addWidget(pg3_container)

 # Create the main layout

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(page_combo)

 main_v_box.addLayout(self.stacked_layout)

 # Set the layout for the main window

 self.setLayout(main_v_box)

 def switchPage(self, index):

 """Slot for switching between tabs."""

 self.stacked_layout.setCurrentIndex(index)

Lastly, the switchPage() slot is created to use index from the QComboBox to switch

the page using setCurrentIndex().

Chapter 4 Learning about Layout ManageMent

101

We’ve finally looked at all of the different built-in layout managers, but before

moving on to the next chapter, now is a good time to talk about a few methods that can

be used to manage space in layout managers.

 Additional Tips for Managing Space
In this section, you will look at a very brief example that demonstrates a few layout

manager methods that can be helpful in ensuring that widgets make the best use of a

window’s space. When you add widgets to a layout, there are a number of checks that the

layout manager performs. These include the following:

• Allocating space based on a widget’s sizeHint(), the recommended

size for a widget, and sizePolicy(), which defines the resizing

behavior for a widget

• Applying stretch factors, if any are specified

• Additional sizing factors set by a developer, such as setting the

minimum or maximum size, height, or width of a widget

For the box layouts, you can adjust the space between items using the following

methods:

• addSpacing(int) – Creates blank space between widgets specified

by int (in pixels)

• addStretch(int) – Adds a stretchable area of value int between

widgets that is proportional to the stretch factors of other widgets

Different methods are used for managing the horizontal and vertical spacing

between widgets in grid and form layouts, as shown in the following list:

• setHorizontalSpacing(int) –Sets the horizontal spacing between

widgets (in pixels)

• setVerticalSpacing(int) – Sets the vertical spacing between

widgets (in pixels)

• setSpacing(int) – Sets the horizontal and vertical spacing between

widgets (in pixels)

We’ll take a look at an example for managing space in QVBoxLayout in the following

section.

Chapter 4 Learning about Layout ManageMent

102

 Explanation for Managing Space
For this application, you should create three widgets in the MainWindow class in

Listing 4-28 that are organized vertically in the window using QVBoxLayout.

Listing 4-28. Brief demonstration of how spacing works with QVBoxLayout

spacing.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QLabel, QPushButton, QLineEdit, QVBoxLayout)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(300, 200)

 self.setWindowTitle("Spacing Example")

 label = QLabel("Enter text")

 line_edit = QLineEdit()

 button = QPushButton("End")

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(label)

 main_v_box.addSpacing(20)

 main_v_box.addWidget(line_edit)

 main_v_box.addStretch()

 main_v_box.addWidget(button)

 self.setLayout(main_v_box)

 self.show()

Chapter 4 Learning about Layout ManageMent

103

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Without adding any spaces or stretching, you will get the left GUI in Figure 4-8.

To place a blank, stretchable space in between the QLineEdit and the QPushButton

widgets, the addStretch() method is used. An argument does not need to be passed to

addStretch() if you want all of the spacing to be the same.

A fixed amount of space is added between the label and line_edit instances using

addSpacing(). Have a look at the differences spacing and stretch factor make in the right

screenshot in Figure 4-8.

Figure 4-8. The GUI before adding spacing and stretching (left) and after (right)

 Setting Content Margins

As a final task left for you, add the following line of code in spacing.py to see how it

affects the layout:

 main_v_box.setContentsMargins(40, 30, 40, 30)

A margin adds space to the outside of a layout. This can be done in PyQt with the

setContentMargins() method. Each integer in the code specifies the size of the border

in pixels as (left, top, right, bottom).

Chapter 4 Learning about Layout ManageMent

104

 Summary
Taking the time to learn about layout management will save you time and effort when

coding your own GUI applications. In this chapter, we reviewed the many ways of

organizing widgets in a PyQt interface. Depending upon the requirements of your

application, there are a variety of options, including absolute positioning and any of the

built-in Qt layout managers.

The box layouts, QHBoxLayout and QVBoxLayout, are used to arrange widgets

horizontally or vertically. QFormLayout is great for building forms. QGridLayout is useful

for strategically organizing and sizing widgets in a grid-like layout. Last, QStackedLayout

can be used when you need to manage space in a window by stacking widgets on top

of one another. Each class has its own special use case, but the real strength lies in how

convenient it is to combine them to create complex arrangements.

The advantages of using a layout manager include having control over the position

of child widgets, being able to set default sizes for widgets, ease of use for handling the

resizing of widgets, and simplification when it comes to updating content in the window

or parent widget when something changes, such as the hiding, showing, or removing of a

child widget. Additionally, you can actually design and lay out your interface graphically

using Qt Designer. We will take a look at how to do this in Chapter 8.

In Chapter 5, we will take a look at how to build main windows that include menu

bars, dock widgets, and more.

Chapter 4 Learning about Layout ManageMent

105
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_5

CHAPTER 5

Menus, Toolbars,
and More
Desktop applications provide means for not only organizing widgets but for arranging

and presenting interactive features and tools to the users as well. A menu is a list of

commands that a computer program can perform presented in a more manageable and

organized fashion. Numerous devices and systems include menus for helping the user to

navigate and select different options and tasks, and a well-organized menu will make a

program easier to use.

In this chapter, you will

• Find out how to create main windows that inherit from QMainWindow

• Create menus, submenus, and checkable menu items using PyQt

classes such as QMenuBar and QAction

• Discover how to set and change widget and main window icons

• Learn about PyQt’s built-in dialog classes, including QFileDialog,

QInputDialog, QColorDialog, and more

• Set up and utilize an application’s status bar to provide feedback

• Use the QDockWidget class to build detachable widgets that can

display common tools and operations

• Build practical applications that teach additional skills, such as

manipulating images using QPixmap and QTransform classes and

setting up applications that print images with the QPrinter class

This chapter will create the foundation for completely functioning programs that can

either be used right away or as starting points for your own programs.

Let’s begin by thinking about common practices used when creating menus.

https://doi.org/10.1007/978-1-4842-7999-1_5

106

 Common Practices for Creating Menus
The arrangement of GUI menus and menu items, or the options in a menu, generally

follows a list of standard practices that have been created over the years. Different

platforms, such as macOS and Windows, also have their own conventions, and this

section will look at the ones common to them all.

• There is a general pattern for ordering menus. From left to right,

the File menu handles common file and application interactions, the

Edit menu contains editing operations, and so on. The Help menu is

typically last with application information and instructions.

• Menus also contain commonly used items. While it will vary

depending upon the type of application you are developing, there are

also general items in menus. The most common examples include

New, Open, Save, and Print in File and Undo, Redo, Cut, Copy, and

Paste in Edit.

• There are common shortcut keys for performing a task. Common

shortcuts include Ctrl+V for Paste (Command+V on macOS) or

Ctrl+X for the Cut item (Command+X on macOS).

• Separators are used to organize related items. They are also used

to make menus easier to navigate.

Let’s begin by putting a few of those ideas into practice in this chapter’s first example.

 Creating a Simple Menu Bar
For the program in Figure 5-1, you will be taking a look at how to create a simple menu
bar, which is a set of pull-down menus with a list of commands for interacting with

an application. In this GUI, the menu bar will contain one menu, File, with only one

command, Quit.

Chapter 5 Menus, toolbars, and More

107

Figure 5-1. A menu bar is created (left) displaying the File menu. A pull-down
menu is displayed (right) with one command, Quit

Let’s create the window that will be the template script for a number of projects

throughout this book.

 Explanation for Creating a Menu Bar
To begin creating the window in Figure 5-1, we can use the basic_window.py script from

Chapter 1 as this GUI’s foundation. In Listing 5-1, import the QApplication class like

usual, but this time import the class QMainWindow rather than QWidget. The QMainWindow

class provides the functionalities for building a main window’s key features, such as

menu bars and toolbars. In PyQt6, the QAction class is now located in the QtGui module.

Listing 5-1. Creating a class that inherits QMainWindow

main_window_template.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow)

from PyQt6.QtGui import QAction

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 5 Menus, toolbars, and More

108

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(450, 350)

 self.setWindowTitle("Main Window Template")

 self.setUpMainWindow()

 self.createActions()

 self.createMenu()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The MainWindow class in this program inherits from QMainWindow, not QWidget. New

class methods, createActions() and createMenu(), will be used to create the menu bar

in Listing 5-2.

The following subsection delves a little further into the differences between

QMainWindow and QWidget.

 QMainWindow vs. QWidget

The QMainWindow class focuses on creating and managing the layout for the main

window of an application. It allows you to set up a window with a status bar, a toolbar,

dock widgets, or other menu features in predefined locations.

The QWidget class is the base class for all user interface objects in Qt, including

widgets. The widgets you have used, such as QPushButton and QTextEdit, inherit

QWidget, granting them access to a wide array of methods for interacting with an

interface or setting the parameters of a widget instance. It is important to note that the

QMainWindow and the QDialog classes also inherit QWidget and are special purpose

classes focusing on creating main windows and dialogs, respectively.

A window in an application is really just a widget that is not placed within a parent

widget. This means that a class that inherits QWidget can be considered a window if it

does not have a parent. Windows will typically have their own title bar and frame.

In Figure 5-2, you can see how the different widgets that QMainWindow can use have

areas specifically assigned for them.

Chapter 5 Menus, toolbars, and More

109

Figure 5-2. Layout structure for the QMainWindow class (Adapted from
https://doc.qt.io/)

The menu bar is fixed horizontally along the top of the window, while the status bar

can be found along the bottom. Toolbars can be situated between the menu bar and

status bar and are allowed to be placed vertically or horizontally. Dock widgets can be

arranged similarly. The central widget in the center of the window must be set if you

are going to use QMainWindow as your base class. For example, you could use a single

QTextEdit widget to act as the main widget in the window or create a QWidget object

with other widgets arranged inside itself.

 Creating the Menu Bar and Adding Actions

In the initializeUI() method in Listing 5-1, you’ll notice three different method calls

for setting up the main window and menu. This is done in order to organize and make

managing the code easier no matter the size of the application. The first method to

create in Listing 5-2, setUpMainWindow(), is left here as a placeholder for future projects.

Listing 5-2. Basic structure for creating a menu bar in an application

main_window_template.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 pass

Chapter 5 Menus, toolbars, and More

http://doc.qt.io/

110

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.quit_act = QAction("&Quit")

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.quit_act)

The next method, createActions(), sets up the actions for the program’s menu.

Actions are used to create options in a menu or toolbar, such as Open, Close, and Save.

In PyQt, these actions are created from the QAction class. Take a look at how the Quit

action, quit_act, is created and then added to file_menu.

The Quit action is an instance of the QAction class. Actions must also have a parent,

generally passed as the final parameter to the QAction instance. Since the main window

is the parent here, we can simply use the self keyword to bind the action to the class.

In the next line, the shortcut for the quit_act is set explicitly using the setShortcut()

method with the key combination Ctrl+Q. Another way to set the shortcut is to use the

ampersand sign, &, in front of the letter you want to use as the shortcut. Depending

upon your system, this will display an underscore under the letter that indicates the

shortcut key.

Note on macos, shortcuts are disabled by default. the best way to set up
shortcuts is to use setShortcut().

Actions in menus also use signals and slots. When an action in the menu is selected,

it emits a signal that needs to be connected to a slot in order to perform an operation.

This is done using the triggered signal.

Chapter 5 Menus, toolbars, and More

111

Sometimes, the same option is displayed in both a menu bar and a toolbar. One

common example is the Print operation in a word processor application, where the

action can be selected from either the File menu, from the toolbar, or using a shortcut.

No matter what causes the signal to be emitted, the QAction class will ensure that the

action is performed correctly.

Last, the createMenu() method sets up the menu bar. For this example, there is only

a single menu, File. In order to create a horizontal menu bar, you’ll need to create an

instance of the QMenuBar class. Since the MainWindow class inherits QMainWindow, this can

be done easily by calling the QMainWindow method menuBar().

Note due to guidelines set by macos, the menu bar will not appear in the
GuI. You can change this with self.menuBar().setNativeMenuBar(False).
For Windows or linux users, you can comment this line out or delete it.

Adding menus to the menu bar is also really simple in PyQt:

 file_menu = self.menuBar().addMenu("File")

Here, the addMenu() method is used to add a menu named File to the menu bar.

Using addMenu() adds a QMenu object. Once again, it is just as simple to use the functions

provided by the QMainWindow class.

Since menus, windows, and some widgets can display icons, let’s take a moment to

find out a little bit more about the QIcon class.

 Using Icons and the QIcon Class
Icons can be used as small graphical images in a GUI, or as symbols that can represent

actions the user can perform in a menu or on a button. They are useful for helping the

user quickly locate common actions and navigate an application. The toolbars in word

processing applications are a good example of this concept, containing large amounts of

tools, each with an icon or textual description.

Chapter 2 briefly introduced a Qt class for handling images, QPixmap. The QIcon class

provides methods that can use pixmaps and modify their style or size so that they can be

used in an application. One really great use of QIcon is to set the appearance of an icon

representing an action to active or disabled.

Chapter 5 Menus, toolbars, and More

112

 Explanation for Using Icons
The example seen in Figure 5-3 demonstrates how to

• Set and change icons dynamically on a QPushButton widget

• Reset the application icon in a window’s title bar

• Organize and apply the central widget in a QMainWindow instance

Note For this and other examples in this chapter, you will need to download the
images folder and its contents from the Github repository.

Figure 5-3. The application icon is not displayed in the title area on
macOS systems

Note For macos users, the icon in the application window cannot be applied due
to system guidelines. You should still take a look at this program though, as it also
shows how to set icons for other widgets in pyQt.

This GUI is a simple exercise in showing how to switch the icon on a QPushButton,

which may come in handy when a button’s state or purpose has changed. Whenever the

Chapter 5 Menus, toolbars, and More

113

user clicks on the button, the fruit that is displayed is randomly selected and the icon is

changed. Listing 5-3 sets up the main window and applies a new icon to the title bar in

the main window.

Listing 5-3. Code for showing how to set icons for the main window

change_icons.py

Import necessary modules

import sys, random

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QLabel, QPushButton, QVBoxLayout)

from PyQt6.QtCore import Qt, QSize

from PyQt6.QtGui import QIcon

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(200, 200)

 self.setWindowTitle("Changing Icons Example")

 self.setWindowIcon(QIcon("images/pyqt_logo.png"))

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The application icon normally displayed in the top left corner of a window on some

systems is changed to the PyQt logo in the right image in Figure 5-4. A window’s icon can

be set using the setWindowIcon() method and passing it a QIcon object. QIcon takes a

path to the image location as an argument. Notice in Figure 5-3 how the application icon

is missing in macOS.

Chapter 5 Menus, toolbars, and More

114

Figure 5-4. The original application icon in the top left corner of the window (left)
can be set to a new icon (right) using the setWindowIcon() method

The main window created in Listing 5-4 is composed of a QLabel, which provides

instruction to the user, and a QPushButton, for selecting one of the fruit images

contained in the images list.

Listing 5-4. The setUpMainWindow() method for using icons

change_icons.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 info_label = QLabel(

 "Click on the button and select a fruit.")

 info_label.setAlignment(Qt.AlignmentFlag.AlignCenter)

 self.images = [

 "images/1_apple.png", "images/2_pineapple.png",

 "images/3_watermelon.png", "images/4_banana.png"]

 self.icon_button = QPushButton()

 self.icon_button.setIcon(

 QIcon(random.choice(self.images)))

 self.icon_button.setIconSize(QSize(60, 60))

 self.icon_button.clicked.connect(

 self.changeButtonIcon)

Chapter 5 Menus, toolbars, and More

115

For the widgets that can display icons, calling the setIcon() method on that widget

will allow you to display an icon on it. Here, the icon for icon_button is chosen randomly

and passed as an argument to be handled by QIcon. Calling the setIconSize() method

on a widget can be used to change the size of the icon. The QSize class is used to define

the two-dimensional size of a widget. PyQt will handle the sizing and style of the widget

based on the parameters you specify.

Finally, the button is connected to the slot in Listing 5-5. In the MainWindow class,

create an additional method, changeButtonIcon(), to handle setting the new icon.

Listing 5-5. Creating the changeButtonIcon() slot

change_icons.py

 def changeButtonIcon(self):

 """When the button is clicked, change the icon to

 a different random icon from the images list."""

 self.icon_button.setIcon(

 QIcon(random.choice(self.images)))

 self.icon_button.setIconSize(QSize(60, 60))

Whenever icon_button is clicked, setIcon() is used to apply a new icon, and

setIconSize() is used to ensure that the icons are all the same size, avoiding any

resizing issues.

 Setting the Central Widget
The widgets have not been arranged, and the central widget has not been set yet in the

main window. Back in the setUpMainWindow() method, the label and button widgets are

organized in Listing 5-6 using QVBoxLayout.

Listing 5-6. Setting the central widget in the main window

change_icons.py

 # Create vertical layout and add widgets

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(info_label)

 main_v_box.addWidget(self.icon_button)

Chapter 5 Menus, toolbars, and More

116

 # Set main layout of window

 container = QWidget()

 container.setLayout(main_v_box)

 self.setCentralWidget(container)

QWidget can be used as a container, providing a means to group and control

widgets. Qt has a number of specific widgets that specifically serve as containers, but

for now, we’ll stick to using QWidget. The widget for the container QWidget is set using

setLayout(), and the QMainWindow method setCentralWidget() is used to set the

primary widget in the window.

Before building a larger project with menus and QMainWindow, let’s first take a look at

some of PyQt’s built-in dialog classes.

 Built-in Dialog Classes in PyQt
Dialogs are great not only for providing feedback but also for interacting with local files

or for collecting input from the user. PyQt is able to create native-looking windows,

dialogs, and widgets no matter the system. Let’s take a moment to get familiar with some

of the built-in dialog boxes and see how to use them.

 The QFileDialog Class
The QFileDialog class can be used to open and select files or directories on your

computer. This dialog class is useful for opening, saving, and naming files.

To open a local file, the QFileDialog method getOpenFileName() is used. An

example of this is shown in the following snippet of code:

file_name, ok = QFileDialog.getOpenFileName(self,

 "Open File", "/Users/user_name/Desktop/",

 "Image Files (*.png *.jpg *.bmp)")

The first argument is the parent of the dialog box. If the parent is the main window,

then the dialog will appear above it on the screen. Next, you can create a title for the

dialog box. This is followed by the directory location that will appear when the dialog

Chapter 5 Menus, toolbars, and More

117

opens. Here, the user’s Desktop will be displayed. The final argument passed is the filter

used to present files with matching patterns given in the string. For the previous code,

image files with the extensions .png, .jpg, and .bmp are selectable. You can specify other

file types as well.

Saving a file is done in a similar fashion using getSaveFileName():

file_name, ok = QFileDialog.getSaveFileName(self,

 "Save File", "/Users/user_name/Desktop/",

 "Text Files (*.txt)")

Here, the user is only allowed to save text files with the extension .txt. The look of

the dialog box that appears will also reflect the type of system you are using. To change

this or other properties, you can include the options parameter:

file_name, ok = QFileDialog.getOpenFileName(self,

 "Open File", "/Users/user_name/Desktop/",

 "Image Files (*.png *.jpg *.bmp)",

 options = QFileDialog.Option.DontUseNativeDialog)

By default, the system’s native style is used.

 The QInputDialog Class
QInputDialog is a native dialog in PyQt that can be used to receive input from the user.

The input is a single value that can be a string, a number, or an item from a list.

To create a basic input dialog and get text from the user:

find_text, ok = QInputDialog.getText(

 self, "Search Text", "Find:")

In this example, an input dialog object is created by calling QInputDialog.

getText(). Using getText() allows the user to enter a single string into a QLineEdit

widget, like in Figure 5-5. The second argument, "Search Text", is the title for the

dialog. The third argument is the label that appears next to the QLineEdit widget. An

input dialog returns two values: the input from the user, find_text, and a Boolean value,

ok. The Boolean value is determined by which budget is pressed in the dialog, True for

the OK button and False for Cancel.

Chapter 5 Menus, toolbars, and More

118

Figure 5-5. Example of a QInputDialog dialog from the Rich Text Notepad GUI

Other types of input can be collected using one of the following QInputDialog

methods:

• getMultiLineText() – Method to get a multiline string from the user

• getInt() – Method to get an integer from the user

• getDouble() – Method to get a floating-point number from the user

• getItem() – Method to let the user select an item from a list

of strings

 The QFontDialog Class
QFontDialog provides a dialog box that allows the user to select and manipulate different

types of fonts. To create a font dialog box and choose a font, use the getFont() method:

 font, ok = QFontDialog.getFont()

The font keyword is the particular font returned from getFont(), and ok is a

Boolean variable to check whether the user selected a font and clicked the OK button.

The font dialog on macOS is shown in Figure 5-6.

Chapter 5 Menus, toolbars, and More

119

Figure 5-6. Example of a QFontDialog dialog box

When the user clicks OK, a font is selected. However, if Cancel is clicked, then the

initial font is returned. If you have a default font that you would like to use in case the

user does not select OK, you could do the following:

 font, ok = QFontDialog.getFont(

 QFont("Helvetica", 10), self)

 self.text_edit_widget.setCurrentFont(font)

In order to change the font if a new one has been chosen, use the setCurrentFont()

method and change it to the new font.

 The QColorDialog Class
The QColorDialog class creates a dialog box for selecting colors like the one in

Figure 5-7. Selecting colors can be useful for changing the color of the text, the window’s

background color, and many other tasks.

Chapter 5 Menus, toolbars, and More

120

Figure 5-7. QColorDialog dialog box

To create a color dialog box and select a color, use the following line of code:

 color = QColorDialog.getColor()

Then check if the user selected a valid color and clicked on the OK button by using

the isValid() method.

If so, you could use the QTextEdit method setTextColor() to change the color of

the text or use setBackgroundColor() to change the color of the background:

 if color.isValid():

 self.text_field.setTextColor(color)

The final dialog we are going to look at is a static method from QMessageBox.

Chapter 5 Menus, toolbars, and More

121

 The About QMessageBox
In many applications, you can often find an About item in the menu. Clicking on this

item will open a dialog box that displays information about the application such as the

software’s logo, title, latest version number, and other legal information.

The QMessageBox class that we looked at in Chapter 3 also provides an about()

method for creating a dialog for displaying a title and text. To create an About dialog

box, try

 QMessageBox.about(self, "About Notepad",

 """<p>Beginner's Practical Guide to PyQt</p>

 <p>Project 5.1 - Notepad GUI</p>""")

This creates the dialog seen in Figure 5-8. If you have never used HTML before, <p>

and </p> around the text are HTML tags that create paragraphs. We’ll take a look at using

HTML with PyQt in Chapter 6.

Figure 5-8. Example About dialog box from the Rich Text Notepad GUI

You can also display an application icon in the window. If an icon is not provided,

the about() method will try and find one from the parent widget. To provide an

icon, call the setWindowIcon() method on the QApplication object in the program’s

main() method.

 app.setWindowIcon(QIcon(“images/app_logo.png"))

Next, you’ll use what you’ve learned about menus and dialogs to create a larger

application.

Chapter 5 Menus, toolbars, and More

122

 Project 5.1 – Rich Text Notepad GUI
For the first project, let’s use the concepts learned so far in this chapter to build a

notepad application that supports rich text using QTextEdit. Figure 5-9 shows an

example of the completed application with text of different sizes, colors, fonts, and

highlights.

Figure 5-9. Notepad GUI with menu bar and QTextEdit widget

This time we will add a proper menu bar with menus and actions. The user will also

have the ability to open and save their text, either as rich text or plain text, and edit the

text’s font, color, or size to give more functionality and creativity to their notes.

Chapter 5 Menus, toolbars, and More

123

 Designing the Rich Text Notepad GUI
It’s best to begin building a GUI by mapping out its key features, such as what widgets are

used in the main interface and what options can be found in the menu.

For a note-taking application, the layout is relatively simple – a menu bar at the top

of the window with different menus for the various functions and tools and an area for

displaying and editing text. For the text field, we will be using a QTextEdit widget that

will also serve as the central widget for the QMainWindow object. Take a look at Figure 5-10

to see the various menu items that are included in this project.

Figure 5-10. Design showing the layout for the Notepad GUI and the different
menus and actions

This application has four menus in the menu bar: File, Edit, Tools, and Help. Having

different menus in the menu bar can help to organize actions under different categories

as well as help the user to more easily locate actions they want to use.

 Explanation for the Rich Text Notepad GUI
QTextEdit already provides the functionality for writing in either plain text or rich text

formats. In this program, you will explore how to use some methods from QTextEdit,

Chapter 5 Menus, toolbars, and More

124

such as undo and redo, as well as the different dialog classes to create a notepad

application. Use main_window_template.py script from the beginning of this chapter to

set up Listing 5-7 and the framework for the MainWindow class.

Listing 5-7. Setting up the main window for the RichText Notepad GUI

richtext_notepad.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QMessageBox, QTextEdit, QFileDialog, QInputDialog,

 QFontDialog, QColorDialog)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QIcon, QTextCursor, QColor, QAction

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(400, 500)

 self.setWindowTitle("5.1 – Rich Text Notepad GUI")

 self.setUpMainWindow()

 self.createActions()

 self.createMenu()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

There are quite a few classes to import for the notepad application. From the

QtWidgets module, we need to import QMainWindow for creating the menu bar and menu

items. We also need to include the different PyQt dialog classes such as QFileDialog

Chapter 5 Menus, toolbars, and More

125

and QInputDialog. From QtGui, QIcon is used for handling icons, QTextCursor is used to

get information about the cursor in text documents, QColor provides methods to create

colors in PyQt, and QAction will create the actions used by the menu.

The MainWindow class inherits QMainWindow. In initializeUI(), the methods for

setting up the main window and its menu bar are called. The main window’s text edit

widget is created in Listing 5-8.

Listing 5-8. The setUpMainWindow() method for the Rich Text Notepad GUI

richtext_notepad.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.text_edit = QTextEdit()

 self.text_edit.textChanged.connect(

 self.removeHighlights)

 self.setCentralWidget(self.text_edit)

The window consists of a single QTextEdit widget and is set as the central widget

for MainWindow. The signal textChanged is emitted when text is edited or pasted into the

widget and is connected to the slot removeHighlights(), which is set up in Listing 5-14.

Next, the createActions() method in Listings 5-9 and 5-10 creates the actions for

the menu.

Listing 5-9. The createActions() method for the Rich Text Notepad GUI, part 1

richtext_notepad.py

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.new_act = QAction(

 QIcon("images/new_file.png"), "New")

 self.new_act.setShortcut("Ctrl+N")

 self.new_act.triggered.connect(self.clearText)

 self.open_act = QAction(

 QIcon("images/open_file.png"), "Open")

 self.open_act.setShortcut("Ctrl+O")

 self.open_act.triggered.connect(self.openFile)

Chapter 5 Menus, toolbars, and More

126

 self.save_act = QAction(

 QIcon("images/save_file.png"), "Save")

 self.save_act.setShortcut("Ctrl+S")

 self.save_act.triggered.connect(self.saveToFile)

 self.quit_act = QAction(

 QIcon("images/exit.png"), "Quit")

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

There are four menus in the notepad’s menu bar. The actions for the first menu, File,

include New for clearing all of the text, Open for opening an existing rich or plain text

file, Save for saving the QTextEdit widget’s current text, and Quit. Let’s look at the first

one, since the others are set up similarly.

The new_act variable is assigned to a QAction object. QIcon is used to set an icon

next to the action’s text in the menu. Then the action is given text to display, "New". Many

of the actions in the notepad program are given a textual shortcut using setShortcut().

Finally, we connect the signal that is emitted when new_act is clicked on to a slot, in this

case, clearText().

Listing 5-10 creates the actions for the Edit, Tools, and Help menus.

Listing 5-10. The createActions() method for the Rich Text Notepad GUI, part 2

richtext_notepad.py

 # Create actions for Edit menu

 self.undo_act = QAction(

 QIcon("images/undo.png"), "Undo")

 self.undo_act.setShortcut("Ctrl+Z")

 self.undo_act.triggered.connect(self.text_edit.undo)

 self.redo_act = QAction(

 QIcon("images/redo.png"), "Redo")

 self.redo_act.setShortcut("Ctrl+Shift+Z")

 self.redo_act.triggered.connect(self.text_edit.redo)

 self.cut_act = QAction(QIcon("images/cut.png"), "Cut")

 self.cut_act.setShortcut("Ctrl+X")

 self.cut_act.triggered.connect(self.text_edit.cut)

Chapter 5 Menus, toolbars, and More

127

 self.copy_act = QAction(

 QIcon("images/copy.png"), "Copy")

 self.copy_act.setShortcut("Ctrl+C")

 self.copy_act.triggered.connect(self.text_edit.copy)

 self.paste_act = QAction(

 QIcon("images/paste.png"), "Paste")

 self.paste_act.setShortcut("Ctrl+V")

 self.paste_act.triggered.connect(self.text_edit.paste)

 self.find_act = QAction(

 QIcon("images/find.png"), "Find All")

 self.find_act.setShortcut("Ctrl+F")

 self.find_act.triggered.connect(self.searchText)

 # Create actions for Tools menu

 self.font_act = QAction(

 QIcon("images/font.png"), "Font")

 self.font_act.setShortcut("Ctrl+T")

 self.font_act.triggered.connect(self.chooseFont)

 self.color_act = QAction(

 QIcon("images/color.png"), "Color")

 self.color_act.setShortcut("Ctrl+Shift+C")

 self.color_act.triggered.connect(self.chooseFontColor)

 self.highlight_act = QAction(

 QIcon("images/highlight.png"), "Highlight")

 self.highlight_act.setShortcut("Ctrl+Shift+H")

 self.highlight_act.triggered.connect(

 self.chooseFontBackgroundColor)

 # Create actions for Help menu

 self.about_act = QAction("About")

 self.about_act.triggered.connect(self.aboutDialog)

Chapter 5 Menus, toolbars, and More

128

QTextEdit already has predefined slots, such as cut(), copy(), and paste(), that

create standard text-editing functionalities. For most of the actions in the Edit menu,

their signals are connected to these special slots rather than creating new ones, with the

exception being find_act.

The actions created in the Tools menu call slots that open dialogs. These actions are used

for altering the appearance of the text. The about_act is used to display an About dialog.

With the actions created, the next step is to create the corresponding menu items in

Listing 5-11.

Listing 5-11. The createMenu() method for the Rich Text Notepad GUI

richtext_notepad.py

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create File menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.new_act)

 file_menu.addSeparator()

 file_menu.addAction(self.open_act)

 file_menu.addAction(self.save_act)

 file_menu.addSeparator()

 file_menu.addAction(self.quit_act)

 # Create Edit menu and add actions

 edit_menu = self.menuBar().addMenu("Edit")

 edit_menu.addAction(self.undo_act)

 edit_menu.addAction(self.redo_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.cut_act)

 edit_menu.addAction(self.copy_act)

 edit_menu.addAction(self.paste_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.find_act)

 # Create Tools menu and add actions

 tool_menu = self.menuBar().addMenu("Tools")

Chapter 5 Menus, toolbars, and More

129

 tool_menu.addAction(self.font_act)

 tool_menu.addAction(self.color_act)

 tool_menu.addAction(self.highlight_act)

 # Create Help menu and add actions

 help_menu = self.menuBar().addMenu("Help")

 help_menu.addAction(self.about_act)

The different actions are added to the appropriate menus in the MainWindow class’s

menu bar with the addMenu() method. To add a divider between categories in a menu,

use addSeparator(). The menu bar can be seen in Figure 5-11.

Figure 5-11. The Notepad GUI and its menus – File (left), Edit (middle), and
Tools(right)

There are a number of slots that are called on when a menu item is clicked. Some of

them open a dialog box and return some kind of input from the user, such as a new file,

text or background color, or a keyword for searching the text.

Listing 5-12 begins constructing the slots for the File menu.

Listing 5-12. The clearText() and openFile() slots for the File menu

richtext_notepad.py

 def clearText(self):

 """Clear the QTextEdit field."""

 answer = QMessageBox.question(self, "Clear Text",

 "Do you want to clear the text?",

 QMessageBox.StandardButton.No | \

 QMessageBox.StandardButton.Yes,

 QMessageBox.StandardButton.Yes)

Chapter 5 Menus, toolbars, and More

130

 if answer == QMessageBox.StandardButton.Yes:

 self.text_edit.clear()

 def openFile(self):

 """Open a text or html file and display its contents

 in the text edit field."""

 file_name, _ = QFileDialog.getOpenFileName(

 self, "Open File", "",

 "HTML Files (*.html);;Text Files (*.txt)")

 if file_name:

 with open(file_name, "r") as f:

 notepad_text = f.read()

 self.text_edit.setText(notepad_text)

Rather than closing a window and opening a new one when the user selects New from

the File menu, the text is simply cleared in clearText(). A QMessageBox is presented, and

the QTextEdit method clear() removes all of the current text if the user clicks Yes.

A QFileDialog is shown to the user when Open is clicked. The user can select either

HTML or text files on their computer. With the file selected, the QTextEdit.setText() is

used to apply the text in the QTextEdit widget.

The slot for saving text, saveToFile(), is created in Listing 5-13.

Listing 5-13. The saveToFile() slot for the File menu

richtext_notepad.py

 def saveToFile(self):

 """If the save button is clicked, display dialog

 asking user if they want to save the text in the text

 edit field to a text or rich text file."""

 file_name, _ = QFileDialog.getSaveFileName(

 self, "Save File”, "",

 "HTML Files (*.html);;Text Files (*.txt)")

 if file_name.endswith(".txt"):

 notepad_text = self.text_edit.toPlainText()

 with open(file_name, "w") as f:

 f.write(notepad_text)

Chapter 5 Menus, toolbars, and More

131

 elif file_name.endswith(".html"):

 notepad_richtext = self.text_edit.toHtml()

 with open(file_name, "w") as f:

 f.write(notepad_richtext)

 else:

 QMessageBox.information(

 self, "Not Saved", "Text not saved.",

 QMessageBox.StandardButton.Ok)

The user can choose between two file extensions, .html or .txt. If .txt is selected,

QTextEdit.toPlainText() is used to convert the text to plain text. The text is then

written to a file. Otherwise, the QTextEdit method toHtml() is used to save the rich text

to a file.

The only menu item in the Edit menu that doesn’t call a built-in QTextEdit slot is the

Find All option, created in Listing 5-14.

Listing 5-14. The searchText() slot for the Edit menu

richtext_notepad.py

 def searchText(self):

 """Search for text."""

 # Display input dialog to ask user for text to find

 find_text, ok = QInputDialog.getText(

 self, "Search Text", "Find:")

 if ok:

 extra_selections = []

 # Set the cursor to the beginning

 self.text_edit.moveCursor(

 QTextCursor.MoveOperation.Start)

 color = QColor(Qt.GlobalColor.gray)

 while(self.text_edit.find(find_text)):

 # Use ExtraSelection() to mark the text you

 # are searching for as gray

 selection = QTextEdit.ExtraSelection()

 selection.format.setBackground(color)

Chapter 5 Menus, toolbars, and More

132

 # Set the cursor of the selection

 selection.cursor = self.text_edit.textCursor()

 extra_selections.append(selection)

 # Highlight all selections in the QTextEdit widget

 self.text_edit.setExtraSelections(

 extra_selections)

 def removeHighlights(self):

 """Reset extra selections after editing text."""

 self.text_edit.setExtraSelections([])

The QInputDialog in Figure 5-5 allows the user to enter a string. If the user presses

OK in the dialog, the cursor for the text_edit moves back to the beginning of the text

with moveCursor() and the QTextCursor flag Start. QTextEdit already has a method

for finding matches, find(). However, it only finds the first match and stops. The

searchText() slot will iterate over the text, searching for all matches, and highlight

them gray.

When a match is found, the QTextEdit structure ExtraSelection() is used to

specify the character format and cursor for a selection of text in QTextEdit. The

setExtraSelections() method allows for more than one match to be highlighted.

The removeHighlights() slot is used to reset the extra selections to an empty list,

consequently removing the gray highlight.

Listing 5-15 sets up the slots for the Tools menu. Each slot will open a dialog for

changing the appearance of the text.

Listing 5-15. Various slots for the Tools menu

richtext_notepad.py

 def chooseFont(self):

 """Select a font from the QFontDialog."""

 current = self.text_edit.currentFont()

 opt = QFontDialog.FontDialogOption.DontUseNativeDialog

 font, ok = QFontDialog.getFont(current, self,

 options=opt)

 if ok:

 self.text_edit.setCurrentFont(font)

Chapter 5 Menus, toolbars, and More

133

 def chooseFontColor(self):

 """Select a font from the QColorDialog."""

 color = QColorDialog.getColor()

 if color.isValid():

 self.text_edit.setTextColor(color)

 def chooseFontBackgroundColor(self):

 """Select a color for text's background."""

 color = QColorDialog.getColor()

 if color.isValid():

 self.text_edit.setTextBackgroundColor(color)

Refer back to the “Built-in Dialog Classes in PyQt” section for an explanation about

the various methods.

The last step is to create the About dialog in Listing 5-16 that appears when the user

selects the About option in the Help menu.

Listing 5-16. Various slots for the Tools menu

richtext_notepad.py

 def aboutDialog(self):

 """Display the About dialog."""

 QMessageBox.about(self, "About Notepad",

 """<p>Beginner's Practical Guide to PyQt</p>

 <p>Project 5.1 - Notepad GUI</p>""")

Refer to the subsection “The About QMessageBox” and Figure 5-8.

The QMainWindow provides convenience methods and other means for creating

professional and well-rounded GUIs.

 Expanding the Features in a Main Window
In this section, you will learn about some additional widgets and features that you can

use when constructing menus and main windows in GUI applications, including

• The QDockWidget class

• The QStatusBar class

• Menu features such as submenus and checkable menu items

Chapter 5 Menus, toolbars, and More

134

These topics will be demonstrated while constructing the GUI in Figure 5-12.

Figure 5-12. GUI with a toolbar, a status bar, and a dock widget. The status bar
on the bottom displays the text “Quit program” when the mouse hovers over the
Quit icon in the toolbar

 Explanation for Expanding the Features
Copy the contents of main_window_template.py into a new Python script,

and let’s begin creating the main window in Listing 5-17.

Listing 5-17. Setting up the main window with additional functionalities

main_window_extras.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QCheckBox, QTextEdit, QDockWidget, QToolBar,

 QStatusBar, QVBoxLayout)

from PyQt6.QtCore import Qt, QSize

from PyQt6.QtGui import QIcon, QAction

Chapter 5 Menus, toolbars, and More

135

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(450, 350)

 self.setWindowTitle("Adding More Window Features")

 self.setUpMainWindow()

 self.createDockWidget()

 self.createActions()

 self.createMenu()

 self.createToolBar()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

A few new classes from the QtWidgets module are imported including QStatusBar,

QToolBar, and QDockWidget. Be sure to add the additional method calls for

createDockWidget() and createToolBar().

Let’s set up the main window and the status bar in Listing 5-18.

Listing 5-18. The setUpMainWindow() method for the main window with

additional functionalities

main_window_extras.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create and set the central widget

 self.text_edit = QTextEdit()

 self.setCentralWidget(self.text_edit)

 # Create the status bar

Chapter 5 Menus, toolbars, and More

136

 self.setStatusBar(QStatusBar())

Similar to the Rich Text Notepad, this application’s central widget is also QTextEdit.

The QMainWindow method setStatusBar() allows for the quick creation of the GUI’s

status bar. Let’s find out a little more about QStatusBar.

 The QStatusBar Class

At the bottom of the GUI in Figure 5-12, there is horizontal bar with the text “Quit

program” displayed inside of it. This bar is known as the status bar and is created

from the QStatusBar class. This widget is very useful for displaying feedback, extra

information about a widget, or the outcome of a process. The first time the method

setStatusBar() is called, it creates the status bar. Following calls will return the status

bar object.

In order to display a message in the status bar when the mouse hovers over an

icon or a widget, you need to call the setStatusTip() method on an action object. For

example:

 exit_act.setStatusTip("Quit program")

This displays the text “Quit program” when the mouse is over the exit_act icon or

menu command. To display text in the status bar when the program begins or when a

function is called, use the showMessage() method:

 self.statusBar().showMessage("Welcome back!")

Status tips are added to the menu items in Listing 5-19. Let’s construct the menu and

actions in the next section.

 Creating Submenus with Checkable Menu Items

As an application becomes more complex, its menus can also begin to turn into a

cluttered mess. With submenus, you can organize similar categories together and

simplify the menu system. Figure 5-13 displays an example of a submenu.

Chapter 5 Menus, toolbars, and More

137

Figure 5-13. The submenu also contains a checkable action to enter
fullscreen mode

First, we’ll need to create the actions for the menu in Listing 5-19.

Listing 5-19. The createActions() method for the main window with additional

functionalities

main_window_extras.py

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.quit_act = QAction(

 QIcon("images/exit.png"), "Quit")

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.setStatusTip("Quit program")

 self.quit_act.triggered.connect(self.close)

 # Create actions for View menu

 self.full_screen_act = QAction(

 "Full Screen", checkable=True)

Chapter 5 Menus, toolbars, and More

138

 self.full_screen_act.setStatusTip(

 "Switch to full screen mode")

 self.full_screen_act.triggered.connect(

 self.switchToFullScreen)

Menu items can also be created so that they act just like switches, being able

to be turned on and off. To create a checkable menu item, include the argument

checkable=True in the QAction parameters. An example of this can be seen with

full_screen_act. It is also possible for checkable menu items to be checked from the

start by calling the trigger() method on the action.

Next, create the menu bar in Listing 5-20.

Listing 5-20. The createMenu() method for the main window with additional

functionalities

main_window_extras.py

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.quit_act)

 # Create View menu, Appearance submenu and add actions

 view_menu = self.menuBar().addMenu("View")

 appearance_submenu = view_menu.addMenu("Appearance")

 appearance_submenu.addAction(self.full_screen_act)

 def switchToFullScreen(self, state):

 """If state is True, display the main window in full

 screen. Otherwise, return the the window to normal."""

 if state: self.showFullScreen()

 else: self.showNormal()

Creating a submenu is similar to creating a regular menu. First, use the addMenu()

method to create the View menu. The appearance_submenu is then created and added to

the View menu using addMenu(), but this time called from the view_menu instance. Don’t

forget to also add an action to the submenu using the addAction() method.

Chapter 5 Menus, toolbars, and More

139

The appearance_submenu in the example has a full_screen_act action added to

it that allows the user to switch between full screen and normal screen modes. Take a

moment to also code the switchToFullScreen() slot in MainWindow.

The next step is to create the application’s toolbar.

 The QToolBar Class

When the user is performing a number of routine tasks, having to open up the menu to

select an action multiple times can become tedious. Luckily, the QToolBar class provides

ways to create a toolbar with icons, text, or standard Qt widgets for quick access to

frequently used commands.

Toolbars are generally located under the menu bar like in Figure 5-12 but can also be

placed vertically or at the bottom of the main window above the status bar. Refer to the

image in Figure 5-2 for an idea of how to arrange toolbars in the main window.

A GUI can only have one menu bar, but it can have multiple toolbars. First, create a

toolbar object with the QToolBar class like in Listing 5-21 and give it a title.

Listing 5-21. The createToolBar() method for the main window with additional

functionalities

main_window_extras.py

 def createToolBar(self):

 """Create the application's toolbar."""

 toolbar = QToolBar("Main Toolbar")

 toolbar.setIconSize(QSize(16, 16))

 self.addToolBar(toolbar)

 # Add actions to the toolbar

 toolbar.addAction(self.quit_act)

Add it to the main window using the QMainWindow method addToolBar(). You can

also set the size of the icons in the toolbar using the setIconSize() method to avoid

extra padding when PyQt tries to figure out the placement by itself. To add an action to

the toolbar, use addAction(). The same icon will appear in both the toolbar and in the

menu. To add a widget to a toolbar, use addWidget().

Let’s wrap up this section by learning how to create dock widgets.

Chapter 5 Menus, toolbars, and More

140

 The QDockWidget Class

The QDockWidget class is used to create detachable or floating tool palettes or widget

panels. Dock widgets are secondary windows that provide additional functionality to

GUI windows.

To create a dock widget object, create an instance of QDockWidget and set the

widget’s title using the setWindowTitle() method like in Listing 5-22.

Listing 5-22. The createDockWidget() method for the main window with

additional functionalities

main_window_extras.py

 def createDockWidget(self):

 """Create the application's dock widget."""

 dock_widget = QDockWidget()

 dock_widget.setWindowTitle("Formatting")

 dock_widget.setAllowedAreas(

 Qt.DockWidgetArea.AllDockWidgetAreas)

 # Create widget examples to add to the dock

 auto_bullet_cb = QCheckBox("Auto Bullet List")

 auto_bullet_cb.toggled.connect(

 self.changeTextEditSettings)

 # Create layout for dock widget

 dock_v_box = QVBoxLayout()

 dock_v_box.addWidget(auto_bullet_cb)

 dock_v_box.addStretch(1)

 # Create a QWidget that acts as a container to

 # hold other widgets

 dock_container = QWidget()

 dock_container.setLayout(dock_v_box)

 # Set the main widget for the dock widget

 dock_widget.setWidget(dock_container)

Chapter 5 Menus, toolbars, and More

141

 # Set initial location of dock widget in main window

 self.addDockWidget(

 Qt.DockWidgetArea.LeftDockWidgetArea, dock_widget)

 def changeTextEditSettings(self, checked):

 """Change formatting features for QTextEdit."""

 if checked:

 self.text_edit.setAutoFormatting(

 QTextEdit.AutoFormattingFlag.AutoBulletList)

 else:

 self.text_edit.setAutoFormatting(

 QTextEdit.AutoFormattingFlag.AutoNone)

When the dock widget is docked inside of the main window, Qt handles the resizing

of the dock widget and the central widget. You can also specify the areas you want the

dock to be placed in the main window using setAllowedAreas().

A QDockWidget can be placed on any of the four sides of the window. To limit the

allowable dock areas, specify a single area or a combination of them separated by a pipe

character:

• LeftDockWidgetArea – Arrange the dock widget on the left side

• RightDockWidgetArea – Arrange the dock widget on the right side

• TopDockWidgetArea – Arrange the dock widget in the top area

• BottomDockWidgetArea – Arrange the dock widget in the

bottom area

This project’s dock widget contains a single QCheckBox that allows the user to add

bulleted text to the main QTextEdit widget. The slot that is called when the checkbox is

toggled is changeTextEditSettings(). When checked, the user can type an asterisk to

create a bulleted list.

In order to place multiple widgets inside the dock, you need to use a container such

as QWidget to serve as the parent for multiple child widgets and arrange them using one

of the layout managers. Then pass the QWidget object as the argument to setWidget().

Finally, set the dock and its initial location in the main window with

addDockWidget().

In this application, if the dock widget is closed, we cannot get it back. In Project 5.2,

we will take a look at how to use checkable menu items to hide or show the dock widget.

Chapter 5 Menus, toolbars, and More

142

 Project 5.2 – Simple Photo Editor GUI
Nowadays, it is quite common to edit images. Some photo editors are very simple,

allowing the user to rotate, crop, or add shapes. Others let the user change the contrast

and exposure, reduce noise, or even add special effects.

In this project, you will take a look at how to create a basic photo editor, shown in

Figure 5-14.

Figure 5-14. Photo Editor GUI. Landscape image from https://pixabay.com

The GUI contains a menu bar at the top, a toolbar with icons underneath the menu

bar, the central widget that displays the image, the status bar on the bottom, and the

dock widget on the right containing simple tools for editing the photo.

Chapter 5 Menus, toolbars, and More

https://pixabay.com

143

 Designing the Photo Editor GUI
Similar to Project 5.1, this GUI also has a menu bar that will contain various menus –

File, Edit, and View. Have a look at the schematic for the GUI in Figure 5-15. Under

the menu bar is the toolbar created using the QToolBar class and contains icons that

represent actions the user can take for opening a file, saving a file, and printing.

Figure 5-15. Layout for the Photo Editor GUI. The main window is much busier,
containing a toolbar, a dock widget, and a status bar

 Explanation for the Photo Editor GUI
This project will introduce you to a number of new classes and acts as a means to

continue learning and applying concepts to build larger, more complex GUIs. Just like

before, use the main_window_template.py as the starting point for Listing 5-23, and

begin by importing some additional PyQt classes.

Chapter 5 Menus, toolbars, and More

144

Listing 5-23. Setting up the main window for the Photo Editor GUI

photo_editor.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QLabel, QPushButton, QDockWidget, QDialog,

 QFileDialog, QMessageBox, QToolBar, QStatusBar,

 QVBoxLayout)

from PyQt6.QtCore import Qt, QSize, QRect

from PyQt6.QtGui import (QIcon, QAction, QPixmap, QTransform,

 QPainter)

from PyQt6.QtPrintSupport import QPrinter, QPrintDialog

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(650, 650)

 self.setWindowTitle("5.2 - Photo Editor GUI")

 self.setUpMainWindow()

 self.createToolsDockWidget()

 self.createActions()

 self.createMenu()

 self.createToolBar()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setAttribute(

 Qt.ApplicationAttribute.AA_DontShowIconsInMenus, True)

 window = MainWindow()

 sys.exit(app.exec())

Chapter 5 Menus, toolbars, and More

145

The application imports an assortment of new classes from different modules. From

the QtGui module, we use QPixmap for handling images, QTransform for performing

transformations on images, and QPainter for drawing and painting widgets.

QRect, from QtCore, is used for creating the rectangular shape of widgets. This will

be used in the printImage() method where the QtPrintSupport module and its classes

provide cross-platform support for accessing printers and printing documents.

The window is initialized like before except this time the setFixedSize() method is

used to set the window’s geometry so that it cannot be resized. Various method calls will

set up the menu, window, toolbar, and dock widget.

Unlike previous examples, this application’s menu won’t display icons; only

the toolbar will show them. Qt has a number of special flags in the Qt Namespace

for specifying the parameters of windows and menus. One in particular is AA_

DontShowIconsInMenus, which is used to hide the icons in the menus. You can use the

QApplication method setAttribute() to specify the flags you want to use.

This GUI’s main window, constructed in Listing 5-24, will consist of a QLabel widget

for displaying images.

Listing 5-24. The setUpMainWindow() method for the Photo Editor GUI

photo_editor.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.image = QPixmap()

 self.image_label = QLabel()

 self.image_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 self.setCentralWidget(self.image_label)

 # Create the status bar

 self.setStatusBar(QStatusBar())

The QPixmap instance, image, is used to display an image on the QLabel, image_

label. The pixmap is instantiated in setUpMainWindow() to avoid issues with the buttons

that manipulate the image. You can avoid this instance here if you disable all editing

buttons and actions when the application starts and only enable them when an image is

set in image_label.

Chapter 5 Menus, toolbars, and More

146

The actions for the File menu – Open, Save, Print, and Quit – are handled in

Listing 5-25.

Listing 5-25. The createActions() method for the Photo Editor GUI, part 1

photo_editor.py

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.open_act = QAction(

 QIcon("images/open_file.png"),"Open")

 self.open_act.setShortcut("Ctrl+O")

 self.open_act.setStatusTip("Open a new image")

 self.open_act.triggered.connect(self.openImage)

 self.save_act = QAction(

 QIcon("images/save_file.png"),"Save")

 self.save_act.setShortcut("Ctrl+S")

 self.save_act.setStatusTip("Save image")

 self.save_act.triggered.connect(self.saveImage)

 self.print_act = QAction(

 QIcon("images/print.png"), "Print")

 self.print_act.setShortcut("Ctrl+P")

 self.print_act.setStatusTip("Print image")

 self.print_act.triggered.connect(self.printImage)

 self.print_act.setEnabled(False)

 self.quit_act = QAction(

 QIcon("images/exit.png"), "Quit")

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.setStatusTip("Quit program")

 self.quit_act.triggered.connect(self.close)

Setting the setEnabled() method on print_act to False shows a disabled menu

item and icon in the menu and the toolbar. The print_act only becomes enabled when

an image is set on image_label.

Chapter 5 Menus, toolbars, and More

147

The actions for the Edit menu are created in Listing 5-26. These actions also appear

in the application’s toolbar in Listing 5-27.

Listing 5-26. The createActions() method for the Photo Editor GUI, part 2

photo_editor.py

 # Create actions for Edit menu

 self.rotate90_act = QAction("Rotate 90°")

 self.rotate90_act.setStatusTip(

 "Rotate image 90° clockwise")

 self.rotate90_act.triggered.connect(

 self.rotateImage90)

 self.rotate180_act = QAction("Rotate 180°")

 self.rotate180_act.setStatusTip(

 "Rotate image 180° clockwise")

 self.rotate180_act.triggered.connect(

 self.rotateImage180)

 self.flip_hor_act = QAction("Flip Horizontal")

 self.flip_hor_act.setStatusTip(

 "Flip image across horizontal axis")

 self.flip_hor_act.triggered.connect(

 self.flipImageHorizontal)

 self.flip_ver_act = QAction("Flip Vertical")

 self.flip_ver_act.setStatusTip(

 "Flip image across vertical axis")

 self.flip_ver_act.triggered.connect(

 self.flipImageVertical)

 self.resize_act = QAction("Resize Half")

 self.resize_act.setStatusTip(

 "Resize image to half the original size")

 self.resize_act.triggered.connect(

 self.resizeImageHalf)

Chapter 5 Menus, toolbars, and More

148

 self.clear_act = QAction(

 QIcon("images/clear.png"), "Clear Image")

 self.clear_act.setShortcut("Ctrl+D")

 self.clear_act.setStatusTip("Clear the current image")

 self.clear_act.triggered.connect(self.clearImage)

The actions for the Edit menu are used to rotate the image, flip the image, resize the

image by half, and clear the image. Except for clear_act, the actions are also added to

the dock widget in Listing 5-28.

The method for creating the menu bar is found in Listing 5-27.

Listing 5-27. The createMenu() method for the Photo Editor GUI

photo_editor.py

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create File menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.open_act)

 file_menu.addAction(self.save_act)

 file_menu.addSeparator()

 file_menu.addAction(self.print_act)

 file_menu.addSeparator()

 file_menu.addAction(self.quit_act)

 # Create Edit menu and add actions

 edit_menu = self.menuBar().addMenu("Edit")

 edit_menu.addAction(self.rotate90_act)

 edit_menu.addAction(self.rotate180_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.flip_hor_act)

 edit_menu.addAction(self.flip_ver_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.resize_act)

 edit_menu.addSeparator()

 edit_menu.addAction(self.clear_act)

Chapter 5 Menus, toolbars, and More

149

 # Create View menu and add actions

 view_menu = self.menuBar().addMenu("View")

 view_menu.addAction(self.toggle_dock_tools_act)

The View menu contains an action for toggling the dock widget’s visibility. If the

dock is ever closed, it can be reopened using the menu. This action was not created in

createActions(), but rather in the createToolsDockWidget() method in Listing 5-29.

This is also the reason that createToolsDockWidget() is called before createActions()

in initializeUI(), since createActions() relies on the toggle_dock_tools_act to be

created already.

The toolbar and its actions are added to the application in Listing 5-28.

Listing 5-28. Creating the toolbar for the Photo Editor GUI

photo_editor.py

 def createToolBar(self):

 """Create the application's toolbar."""

 tool_bar = QToolBar("Photo Editor Toolbar")

 tool_bar.setIconSize(QSize(24,24))

 self.addToolBar(tool_bar)

 # Add actions to the toolbar

 tool_bar.addAction(self.open_act)

 tool_bar.addAction(self.save_act)

 tool_bar.addAction(self.print_act)

 tool_bar.addAction(self.clear_act)

 tool_bar.addSeparator()

 tool_bar.addAction(self.quit_act)

The dock widget in Listing 5-29 displays the editing options from the Edit menu. It

is restricted to only the left and right sides of the application using setAllowedAreas().

After this step, create the QPushButton widgets for editing images.

Listing 5-29. Creating the dock widget for the Photo Editor GUI

photo_editor.py

 def createToolsDockWidget(self):

 """Create the application's dock widget. Use View ->

 Edit Image Tools menu to show/hide the dock."""

Chapter 5 Menus, toolbars, and More

150

 dock_widget = QDockWidget()

 dock_widget.setWindowTitle("Edit Image Tools")

 dock_widget.setAllowedAreas(

 Qt.DockWidgetArea.LeftDockWidgetArea |

 Qt.DockWidgetArea.RightDockWidgetArea)

 # Create buttons for editing images

 self.rotate90 = QPushButton("Rotate 90°")

 self.rotate90.setMinimumSize(QSize(130, 40))

 self.rotate90.setStatusTip(

 "Rotate image 90° clockwise")

 self.rotate90.clicked.connect(self.rotateImage90)

 self.rotate180 = QPushButton("Rotate 180°")

 self.rotate180.setMinimumSize(QSize(130, 40))

 self.rotate180.setStatusTip(

 "Rotate image 180° clockwise")

 self.rotate180.clicked.connect(self.rotateImage180)

 self.flip_horizontal = QPushButton("Flip Horizontal")

 self.flip_horizontal.setMinimumSize(QSize(130, 40))

 self.flip_horizontal.setStatusTip(

 "Flip image across horizontal axis")

 self.flip_horizontal.clicked.connect(

 self.flipImageHorizontal)

 self.flip_vertical = QPushButton("Flip Vertical")

 self.flip_vertical.setMinimumSize(QSize(130, 40))

 self.flip_vertical.setStatusTip(

 "Flip image across vertical axis")

 self.flip_vertical.clicked.connect(

 self.flipImageVertical)

 self.resize_half = QPushButton("Resize Half")

 self.resize_half.setMinimumSize(QSize(130, 40))

 self.resize_half.setStatusTip(

 "Resize image to half the original size")

 self.resize_half.clicked.connect(self.resizeImageHalf)

Chapter 5 Menus, toolbars, and More

151

 # Create layout for dock widget

 dock_v_box = QVBoxLayout()

 dock_v_box.addWidget(self.rotate90)

 dock_v_box.addWidget(self.rotate180)

 dock_v_box.addStretch(1)

 dock_v_box.addWidget(self.flip_horizontal)

 dock_v_box.addWidget(self.flip_vertical)

 dock_v_box.addStretch(1)

 dock_v_box.addWidget(self.resize_half)

 dock_v_box.addStretch(10)

 # Create QWidget that acts as a container and

 # set the layout for the dock

 tools_container = QWidget()

 tools_container.setLayout(dock_v_box)

 dock_widget.setWidget(tools_container)

 # Set initial location of dock widget

 self.addDockWidget(

 Qt.DockWidgetArea.RightDockWidgetArea,

 dock_widget)

 # Handle the visibility of the dock widget

 self.toggle_dock_act = dock_widget.toggleViewAction()

Add the widgets you create to a layout, add that layout to a QWidget container, and

then add it to the dock using addDockWidget(). To handle when the dock widget is

checked or unchecked in the menu or if the user has closed the dock widget using its

close button, use the QDockWidget method toggleViewAction() to create the action.

 Handling Images in the Photo Editor GUI

This section looks at the methods in MainWindow for interacting with local image files. A

QFileDialog is presented when the user wants to open or save an image in Listing 5-30.

Chapter 5 Menus, toolbars, and More

152

Listing 5-30. Creating slots for loading and saving images in the Photo Editor GUI

photo_editor.py

 def openImage(self):

 """Open an image file and display its contents on the

 QLabel widget."""

 image_file, _ = QFileDialog.getOpenFileName(

 self, "Open Image", "",

 "JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;\

 Bitmap Files (*.bmp);;GIF Files (*.gif)")

 if image_file:

 self.image = QPixmap(image_file)

 self.image_label.setPixmap(

 self.image.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 else:

 QMessageBox.information(self, "No Image",

 "No Image Selected.",

 QMessageBox.StandardButton.Ok)

 self.print_act.setEnabled(True)

 def saveImage(self):

 """Display QFileDialog to select image location and

 save the image."""

 image_file, _ = QFileDialog.getSaveFileName(

 self, "Save Image", "",

 "JPG Files (*.jpeg *.jpg);;PNG Files (*.png);;\

 Bitmap Files (*.bmp);;GIF Files (*.gif)")

 if image_file and self.image.isNull() == False:

 self.image.save(image_file)

 else:

 QMessageBox.information(self, "Not Saved",

 "Image not saved.",

 QMessageBox.StandardButton.Ok)

Chapter 5 Menus, toolbars, and More

153

If the user selects a local image, the image instance is updated with a new pixmap,

image. The new pixmap is then applied to image_label with setPixmap(), where image

is scaled to fit the current size of image_label. Its size is determined using the size()

method and will vary if the dock widget is open or closed. When resizing a pixmap, other

parameters can be specified. How an image will use the available space can be specified

with the enum Qt.AspectRatioMode. The aspect ratio can either be

• Ignored so that the image takes up all available space without regard

for aspect ratio (IgnoreAspectRatio)

• Preserved, but also scaled to fit within the label (KeepAspectRatio)

• Preserved, but able to expand beyond the label

(KeepAspectRatioByExpanding)

When an image is scaled to fit the label’s current size, the textures of the image will

need to be smoothed to avoid distortion of the image. Smoothing of an image is specified

using the parameter SmoothTransformation. The other option is FastTransformation,

where no smoothing occurs.

If the user wants to save the image, the QPixmap method save() is used in

saveImage().

Slots for clearing and rotating images are called whenever an operation is selected

in the menu, toolbar, or dock. An example of an image being rotated is shown in

Figure 5-16. The slots are created in Listing 5-31.

Chapter 5 Menus, toolbars, and More

154

Figure 5-16. Example of 90° rotation in the Photo Editor GUI. The image is
stretched horizontally to fit in the main window

Listing 5-31. Creating slots for clearing and rotating images in the Photo

Editor GUI

photo_editor.py

 def clearImage(self):

 """Clears current image in the QLabel widget."""

 self.image_label.clear()

 self.image = QPixmap() # Reset pixmap

 self.print_act.setEnabled(False)

 def rotateImage90(self):

 """Rotate image 90° clockwise."""

Chapter 5 Menus, toolbars, and More

155

 if self.image.isNull() == False:

 transform90 = QTransform().rotate(90)

 pixmap = QPixmap(self.image)

 mode = Qt.TransformationMode.SmoothTransformation

 rotated = pixmap.transformed(transform90,

 mode=mode)

 self.image_label.setPixmap(

 rotated.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 self.image = QPixmap(rotated)

 self.image_label.repaint() # Repaint the label

 def rotateImage180(self):

 """Rotate image 180° clockwise."""

 if self.image.isNull() == False:

 transform180 = QTransform().rotate(180)

 pixmap = QPixmap(self.image)

 mode = Qt.TransformationMode.SmoothTransformation

 rotated = pixmap.transformed(transform180,

 mode=mode)

 self.image_label.setPixmap(

 rotated.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 # In order to keep from being allowed to rotate

 # the image, set the rotated image as self.image

 self.image = QPixmap(rotated)

 self.image_label.repaint() # Repaint the label

The clearImage() slot clears image_label, creates an empty pixmap for image, and

disables print_act.

Image transforms occur when a function is applied to an image and alters that

image in some way. Transformations include rotation, scaling, and smoothing.

QTransform is used to manipulate graphics in 2D space. For both rotateImage90()

Chapter 5 Menus, toolbars, and More

156

and rotateImage180(), the QTransform class is used to rotate the images. The QPixmap

method transformed() is used to return a transformed pixmap. The rotated pixmap is

then set on the label.

The method repaint() is important as it ensures that the contents of the image_

label are updated after the transformation.

Listing 5-32 continues to use the QTransform for flipping images.

Listing 5-32. Creating slots for flipping images in the Photo Editor GUI

photo_editor.py

 def flipImageHorizontal(self):

 """Mirror the image across the horizontal axis."""

 if self.image.isNull() == False:

 flip_h = QTransform().scale(-1, 1)

 pixmap = QPixmap(self.image)

 flipped = pixmap.transformed(flip_h)

 self.image_label.setPixmap(

 flipped.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 self.image = QPixmap(flipped)

 self.image_label.repaint()

 def flipImageVertical(self):

 """Mirror the image across the vertical axis."""

 if self.image.isNull() == False:

 flip_v = QTransform().scale(1, -1)

 pixmap = QPixmap(self.image)

 flipped = pixmap.transformed(flip_v)

 self.image_label.setPixmap(

 flipped.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 self.image = QPixmap(flipped)

 self.image_label.repaint()

Chapter 5 Menus, toolbars, and More

157

The process for flipping images across the horizontal and vertical axes is similar to

the code for rotations. The key difference is the use of Transform.scale() for scaling

images along the horizontal and vertical axes. A negative value passed to scale() will

flip the image in that direction. A value of 1 means that the size of the image does not

change, whereas a value of 0.5 would shrink the image by half. This is demonstrated in

Listing 5-33.

Listing 5-33. Creating slots for resizing images in the Photo Editor GUI

photo_editor.py

 def resizeImageHalf(self):

 """Resize the image to half its current size."""

 if self.image.isNull() == False:

 resize = QTransform().scale(0.5, 0.5)

 pixmap = QPixmap(self.image)

 resized = pixmap.transformed(resize)

 self.image_label.setPixmap(

 resized.scaled(self.image_label.size(),

 Qt.AspectRatioMode.KeepAspectRatio,

 Qt.TransformationMode.SmoothTransformation))

 self.image = QPixmap(resized)

 self.image_label.repaint()

The last step to take care of is creating the method for printing.

 The QPrinter Class

The Photo Editor includes a method for printing images. The QPrinter class is used to

create a page for printing documents. A number of parameters can be set for the page,

including its orientation and the paper size.

For this example, we want to use QPrinter to print the image on image_label. To do

so, we will also need to use the QPainter class to specify what to paint on the page that

we want to print, which is the image. This is all handled in Listing 5-34.

Chapter 5 Menus, toolbars, and More

158

Listing 5-34. Creating the slot for printing images in the Photo Editor GUI

photo_editor.py

 def printImage(self):

 """Print image and use QPrinter to select the

 native system format for the printer dialog."""

 printer = QPrinter()

 # Configure the printer

 print_dialog = QPrintDialog(printer)

 if print_dialog.exec() == QDialog.DialogCode.Accepted:

 # Use QPainter to output a PDF file

 painter = QPainter()

 painter.begin(printer)

 # Create QRect object to hold the painter's

 # current viewport, which is the image_label

 rect = QRect(painter.viewport())

 # Get the size of image_label and use it to set

 # the size of the viewport

 size = QSize(self.image_label.pixmap().size())

 size.scale(rect.size(),

 Qt.AspectRatioMode.KeepAspectRatio)

 painter.setViewport(rect.x(), rect.y(),

 size.width(), size.height())

 painter.setWindow(

 self.image_label.pixmap().rect())

 # Scale image_label to fit the rect source (0, 0)

 painter.drawPixmap(0, 0,

 self.image_label.pixmap())

 painter.end()

With the QPrinter object defined, the next step is to open a native-looking

QPrintDialog for the user to configure the printer’s settings. If the user clicks the Print

button in the dialog (which refers to QDialog.DialogCode,Accepted), a QPainter object

is created, and the printer object is passed to it. From there, we can acquire the size of

the label and scale painter to the size of the pixmap.

Chapter 5 Menus, toolbars, and More

159

The QPainter method setViewport() specifies the size of the printing device’s

coordinates, while setWindow() defines the logical coordinates. Using QPainter, we

need to map the logical coordinates of the label to physical coordinates before printing.

The image is sent to the printer when end() is called.

The user can now perform simple edits, save, and print their images using the Photo

Editor GUI.

 Summary
In this chapter, you were able to see the benefit of using the QMainWindow class to

construct your application’s main window. QMainWindow provides the functionalities and

interactions necessary for integrating toolbars, menus, dock widgets, and status bars

easily into your GUIs. There is still tons more to learn when it comes to using menus,

such as creating context menus and displaying widgets in the status bar. As you follow

along in this book, you’ll continue to learn and apply many of these concepts in practical

examples.

A menu bar can consist of several menus, each of which can be broken down into

several commands. Each of these commands could themselves also be checkable or

even submenus. The QAction class ensures that the correct action is executed no matter

what triggered the action, whether from a menu, a toolbar, shortcut keys, or a widget.

Toolbars are often composed of icons that allow the user to locate commonly used

commands. The QDockWidget class creates movable and floating panels for organizing

and displaying different tools, widgets, or commands to the user. Status bars establish a

space to give further textual information about widgets or provide feedback.

In Chapter 6, you will learn how to modify the appearance and style of widgets using

style sheets.

Chapter 5 Menus, toolbars, and More

161
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_6

CHAPTER 6

Styling Your GUIs
The GUIs you have created up until now have mainly focused on functionality and less

on appearance and customization. Creating an interactive, coherent, and professional-

looking GUI can be achieved not only with widgets and layout managers but also by

modifying the look and behavior of each object in the interface. Choosing the right style,

colors, fonts, and subtle forms of feedback can help create a consistent, easy-to-navigate,

user-friendly experience.

In this chapter, you will

• Find out about styling PyQt applications

• Learn how to customize the appearance of widgets with Qt Style

Sheets and HTML

• Use new PyQt widgets and classes, including QRadioButton,

QGroupBox, and QTabWidget

• Use containers and tabbed widgets for organizing and managing

groups of widgets

Let’s start by learning about what styles are in PyQt. After that, you’ll find out how to

customize the look of an application’s windows and widgets.

 What Are Styles in PyQt?
When you use PyQt, the appearance of your applications are handled by Qt’s QStyle

class. QStyle contains a number of subclasses that imitate the look of the system on

which an application is being run. This makes your GUI look like a native macOS, Linux,

or Windows application. Custom styles can be made either by modifying existing QStyle

classes, creating your own classes, or using Qt Style Sheets.

https://doi.org/10.1007/978-1-4842-7999-1_6

162

Without specifying a style in your code, PyQt will automatically choose a style that

makes a GUI look like a native application. There are a number of built-in styles as well.

You can use Listing 6-1 to discover what styles are available on your operating system.

Listing 6-1. Finding out what styles are available on your local system

styles.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QStyleFactory

Find out your OS's available styles

print(f"Keys: {QStyleFactory.keys()}")

Find out the default style applied to an application

app = QApplication(sys.argv)

print(f"Default style: {app.style().name()}")

Running this short script will print out the following in a macOS shell:

Keys: ['macOS', 'Windows', 'Fusion']

Default style: macos

On Windows, you will probably get a different set of keys (['windowsvista',

'Windows', 'Fusion']) and style (windowsvista). Linux should also produce different

outputs as well.

The QStyleFactory class is used to create a QStyle object. Printing the

QStyleFactory keys will return a list of all possible styles available on your OS. The

output will change if you are on Windows or Linux. The Windows and Fusion styles are

typically included on all systems.

 Changing the Default Style
It is possible to change the style being used by an application using the QApplication

method setStyle(). Be sure to pass one of the available styles as an argument. For

example:

app.setStyle("Fusion")

Chapter 6 Styling your guiS

163

Styles can also be specified in the command line when running an application by

including the -style option and a style type, such as

$ python3 food_order.py -style Fusion

You should take a moment and try changing the style of previous programs. Be sure

to include the -style option or use the setStyle() method and notice the differences in

appearance.

In the following sections, we will take a look at how you can customize the look of

widgets in user interfaces.

 Modifying Widget Appearances
If you are going to modify the native styles given to widgets in PyQt, it is important to

consider a few principles:

 1. Consistency is concerned with making sure widgets and other

components of a GUI look and behave the same way.

 2. Visual hierarchy can be created through color, layout, size, or

even depth.

 3. Relationships between different widgets can be established

by how widgets are arranged or aligned. Widgets closer to

one another or arranged vertically or horizontally in a line are

generally perceived as related.

 4. Emphasis can be used to direct the user’s attention to specific

widgets or parts of a window or dialog. This can be achieved using

visual contrast, perhaps through different sizes or fonts.

 5. Patterns in the design of a GUI can be used to reduce the time

it takes for a user to perform a task, maintain consistency, and

create unity within an interface.

Chapter 6 Styling your guiS

164

In PyQt, it is possible to use HyperText Markup Language (HTML) for modifying

the look of text and Cascading Style Sheets (CSS) for customizing the appearance of

widgets and text. As of publishing, Qt is still using a subset of HTML4.1 We’ll look more at

these languages in the following sections.

 Using HTML to Change the Look of Text
For classes in PyQt that can display rich text, such as QLabel and QLineEdit, HTML can

be used to edit the appearance of text. To demonstrate, we’ll create a simple window in

Listing 6-2. The GUI displays two QLabel widgets – one where the text is not modified

and another with changes to the text. You can use the basic_window.py script from

Chapter 1 to get started creating this example.

Listing 6-2. Styling the text in a QLabel widget using HTML

html_ex.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QVBoxLayout)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(300, 100)

 self.setWindowTitle("HTML Example")

1 Higher levels of HTML currently exist, such as HTML5. For more information about HTML4,
have a look at www.w3.org/TR/html401/.

Chapter 6 Styling your guiS

165

 no_style_label = QLabel(

 """Have no fear of perfection

 - you'll never reach it.

 - Salvador Dali""")

 style_label = QLabel("""

 <p>

 Have no fear of perfection -

 you'll never reach it.</p>

 <p align='right'>

 - <i>Salvador Dali</i></p>""")

 v_box = QVBoxLayout()

 v_box.addWidget(no_style_label)

 v_box.addWidget(style_label)

 self.setLayout(v_box)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Setting up the main window is similar to previous programs, so we’ll focus more on

the two QLabel instances, no_style_label and style_label, in this example. The no_

style_label instance is similar to other QLabel widgets we have created before. By using

triple quotes, the text displayed in the label can also span across multiple lines. You can

see this in Figure 6-1.

Figure 6-1. Two QLabel widgets display the same text, but the bottom label has
been modified

Chapter 6 Styling your guiS

166

For style_label, various HTML tags and attributes are used to describe the look of

the text. Tags are used to define individual sections of text, while attributes are used to

describe additional characteristics of a tag. Tags will typically consist of a starting tag, for

example, <p>, and a corresponding ending tag, </p>. The p tag is used to define a single

block of text within a larger section.

Note Since Qt still uses htMl4, you are still able to use some tags that are
deprecated in htMl5. in many cases, it may be more efficient to use htMl tags
along with CSS formatting. (We’ll cover CSS in a little more detail in the next
section.) this section merely provides one method for manipulating text.

The style changes here are defined inline, meaning that the HTML code isn’t loaded

from an external file but is instead directly specified for each widget. Doing it this way

is useful for small adjustments to text or widgets. However, as we shall see in later

examples, creating a separate variable or even file to store the styles is a better practice.

Table 6-1 describes the tags and attributes used in Listing 6-2.

Table 6-1. Some HTML4 tags and attributes that can be used in PyQt

Tag Description

p Defines a paragraph. attributes such as align can be used to modify the tag

font used to specify the look of a font using the color, face, and size attributes

b Specifies bold text

i Specifies italic text

More information about using HTML and the supported tags in Qt can be found at

https://doc.qt.io/qt- 6/richtext- html- subset.html#using- html- markup- in- text-

widgets. The following section will discuss how to use the subset of CSS properties that

are available in Qt.

Chapter 6 Styling your guiS

https://doc.qt.io/qt-6/richtext-html-subset.html#using-html-markup-in-text-widgets
https://doc.qt.io/qt-6/richtext-html-subset.html#using-html-markup-in-text-widgets

167

 Using Qt Style Sheets to Change the Look of Widgets
CSS is a language that can be used alongside HTML to define how the different

components of an application should be styled. Properties in CSS style sheets are

applied in a “cascading” manner, meaning that properties are applied sequentially in a

style sheet. Conflicts can sometimes arise depending on the order of the style sheet or

between parent and child widgets, so you will need to pay attention to how you organize

your style sheets. You will also face issues when you have multiple objects of the same

widget type in a window but want to apply different styles.

With Qt Style Sheets, you can customize a number of different widget properties,

including background color, font size and color, border type, width, or style, as well as

add padding to widgets. You can also modify pseudostates, which define special states

of a widget, such as when a mouse hovers over a widget or when a widget changes states

from active to disabled. Subcontrols can also be modified, allowing you to access a

widget’s sub-elements and change their appearance, location, or other properties. For

example, you could change the look of the indicator for QCheckBox to have a different

color or icon when checked or unchecked.

Customizations can be applied either to individual widgets or to an application’s

QApplication instance using setStyleSheet(). For a list of widgets that can be styled or

for a reference to all of the different properties supported in Qt, have a look at https://

doc.qt.io/qt- 6/stylesheet- reference.html. Examples for using Qt Style Sheets are

found at https://doc.qt.io/qt- 6/stylesheet-examples.html.

Let’s look at a few examples before jumping into building an application. Changing

the background color of a widget is quite common. To change the color from the

standard gray color to blue, you could use the following line of code:

line_edit.setStyleSheet("background-color: blue")

Pass a CSS property and a value separated by a colon as a string to setStyleSheet().

Here, the background color for line_edit is set to blue using the CSS property

background- color. This string that specifies the changes is called a declaration. If you

are adjusting multiple properties in a single statement, separate each property with a

semicolon.

Colors in a style sheet can be specified using either hexadecimal, RGB, or color

keyword formats. To change the foreground color (the text color) of a widget, have a look

at the following code:

line_edit.setStyleSheet("color: rgb(244, 160, 25") # orange

Chapter 6 Styling your guiS

https://doc.qt.io/qt-6/stylesheet-reference.html
https://doc.qt.io/qt-6/stylesheet-reference.html
https://doc.qt.io/qt-6/stylesheet-examples.html

168

For windows and some widgets, you could even set a background image. To add a

background image to the main window class, you could use the following code:

self.setStyleSheet("background-image: url(images/logo.png)")

You’ll need to use the url() syntax and pass a file location as an argument. A useful

link regarding style sheet syntax is found at https://doc.qt.io/qt- 5/stylesheet-

syntax.html.

The first example GUI you will build can be seen in Figure 6-2. The application

consists of QLabel and QPushButton widgets, and styles are applied inline.

Figure 6-2. Customized QLabel and QPushButton widgets

For comparison, have a look at the same GUI in Figure 6-3 where style sheets have

not been applied.

Figure 6-3. PyQt GUI without style sheets

Chapter 6 Styling your guiS

https://doc.qt.io/qt-5/stylesheet-syntax.html
https://doc.qt.io/qt-5/stylesheet-syntax.html

169

Let’s see how to apply the concepts you’ve learned to build the application in the

following section.

 Explanation for Using “Inline” Qt Style Sheets
In Listings 6-3 to 6-5, you will take a brief look at seeing how to customize individual

widget properties. Let’s start by creating a new file using the basic_window.py script,

include the additional QtWidgets imports at the top, and modify the settings in

initializeUI(). This GUI serves to demonstrate how to style widgets, so widgets are

not connected to any signals. Be sure to download the images folder from this chapter’s

GitHub repository.

Listing 6-3. Setting up the main window for using Qt Style Sheets

style_sheet_ex.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QVBoxLayout)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(200, 200)

 self.setWindowTitle("Style Sheets Example")

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The code in Listing 6-4 is placed before the show() method call in Listing 6-3. The

label created uses a combination of HTML and CSS to modify its appearance.

Chapter 6 Styling your guiS

170

Listing 6-4. Customizing the appearance for a QLabel widget in initializeUI()

style_sheet_ex.py

 label = QLabel("<p align=center>Give me a like!</p>")

 label.setStyleSheet("""

 background-color: skyblue;

 color: white;

 border-style: outset;

 border-width: 3px;

 border-radius: 5px;

 font: bold 24px 'Times New Roman'""")

The label’s text is arranged in the center using the HTML attribute align. For the

style sheet, the background is set to skyblue, and the text color is white. We can specify

different border styles, widths, and radius values of the corners using CSS properties.

Some commonly used border styles include outset, inset, and solid. Finally, the font

style, weight, and size can also be set. A table of typically used properties can be found

toward the end of the chapter in the “CSS Properties Reference” section.

You should have a try and change the different pixel and color values and notice

the differences. Refer to the Qt Style Sheets documentation for ideas about different

properties that you can manipulate.

 Customizing Styles to React to Interactions

When you use the general style settings for widgets, you will notice that they have their

own ways of reacting to a user’s interaction. However, when you change some aspects

of a widget using style sheets, other features may no longer work properly. In many

instances, you’ll also need to style them as well. One common example is handling

button presses after editing a button’s style.

Let’s start by adding a QPushButton like in Listing 6-5 after label.

Listing 6-5. Customizing the appearance for a QPushButton widget in

initializeUI()

style_sheet_ex.py

 like_button = QPushButton()

 like_button.setStyleSheet("""

 QPushButton {background-color: lightgrey;

Chapter 6 Styling your guiS

171

 padding: 5px;

 border-style: inset;

 border-width: 1px;

 border-radius: 5px;

 image: url(images/like_normal.png);

 qproperty-iconSize: 20px 20px;}

 QPushButton:pressed {background-color: grey;

 padding: 5px;

 border-style: outset;

 border-width: 1px;

 border-radius: 5px;

 image: url(images/like_clicked.png);

 qproperty-iconSize: 20px 20px;}""")

 v_box = QVBoxLayout()

 v_box.addWidget(label)

 v_box.addWidget(like_button)

 self.setLayout(v_box)

We want to be able to handle the pseudostate when the button is being pressed.

Unlike this GUI’s QLabel object, we’ll need to specify the selector, which is the widget

type affected by the change (here, it is QPushButton), in order to access the :pressed

state. By altering the normal look of the button, specifically the borders, the button will

no longer display feedback when being pressed.

Several properties that can be edited are common among many widgets, such as

background-color, border, and padding. The padding property is used to add space

around the text or image within the widget. If you wanted to add extra space outside of

the widget, you can use the margin property.

An image is also used for like_button, and its size is adjusted using qproperty-

iconSize. The qproperty property is used to modify specific aspects of a widget class.

A simple example would be the text() getter from QLabel. If you wanted to use style

sheets to specify the text of a label, you could use the following bit of code:

label.setStyleSheet("qproperty-text: 'example text'")

Chapter 6 Styling your guiS

172

For the :pressed state, a darker background color, a darker image, and a different

border style are used to convey to the user that the button is being pressed. The last step

is to add the widgets to a layout and set the layout for the window.

A list of all pseudostates can be found in Qt’s Style Sheet references. Let’s check out a

more efficient alternative to using inline style sheets in the next section.

 Explanation for Using “Embedded” Qt Style Sheets
Embedded style sheets in CSS are used to define the styles for the entire document

in one location, usually in the beginning of the script. We can follow a similar pattern

when creating PyQt applications. This is especially useful when you have multiple

widgets of the same type that all share the same style, allowing you to specify all of the

modifications at one time. For example, the following code would set the background

color for all QPushButton instances to red:

app.setStyleSheet("QPushButton{background-color: #C92108}")

Notice how the change is being applied to the QApplication object, app. For the

example GUI in Figure 6-4, we are going to take a look at how to use embedded style

sheets to apply changes to specific widgets.

Figure 6-4. GUI that demonstrates how to apply styles to specific widgets

The window contains two QPushButton widgets – one with a native style and the

other with a modified style.

Chapter 6 Styling your guiS

173

 Applying Changes to Specific Widgets

When you create an object in PyQt, such as a widget, you can give it a name using the

QObject method setObjectName(). This can be useful for finding a particular child of a

parent widget. When using style sheets, this allows us to give a widget an ID Selector, or

a specific name, for identifying a particular widget.

Listing 6-6 shows how to use the ID Selector to apply a different style to a

specified button.

Listing 6-6. Creating an embedded style sheet

style_sheet_ex2.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QVBoxLayout)

style_sheet = """

 QPushButton#Warning_Button{

 background-color: #C92108;

 border-radius: 5px;

 padding: 6px;

 color: #FFFFFF

 }

 QPushButton#Warning_Button:pressed{

 background-color: #F4B519;

 }

"""

The window is simply composed of a QLabel and two QPushButton widgets. To target

one specific widget, use the ID Selector. For this example, that is #Warning_Button. To

handle changes when the button is pressed, add the pseudostate :pressed after the ID

Selector. These changes are added to the style_sheet variable.

Listing 6-7 shows how to set up the MainWindow class, create the buttons, use

setObjectName() to create the ID Selector, and arrange the widgets in a layout.

Chapter 6 Styling your guiS

174

Listing 6-7. Creating the MainWindow class and applying the style sheet

style_sheet_ex2.py

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(230, 140)

 self.setWindowTitle("Style Sheets Example 2")

 label = QLabel("<p align=center>Push a button.</p>")

 normal_button = QPushButton("Normal")

 warning_button = QPushButton(“Warning!")

 # Set ID Selector

 warning_button.setObjectName("Warning_Button")

 v_box = QVBoxLayout()

 v_box.addWidget(label)

 v_box.addWidget(normal_button)

 v_box.addWidget(warning_button)

 self.setLayout(v_box)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet) # Set style of application

 window = MainWindow()

 sys.exit(app.exec())

The last task for this program is to apply the style sheet to the application’s

QApplication object. Before moving on to a larger styling project, let’s find out about a

few new and useful PyQt classes that are great for organization.

Chapter 6 Styling your guiS

175

 Organizing Widgets with Containers and Tabs
Organization in a GUI can be achieved not only visually, but also by continuing to learn

about new tools for structuring widgets. In Chapter 5, you saw how to use QWidget to

group widgets together. In this section, you’ll

• See how to create containers that create boxes around

related widgets

• Find out about radio buttons to practically see how relationships can

be created and managed when developing GUIs

• Explore the idea of organization in a user interface with tabbed

interfaces, allowing for more content to be arranged in a GUI without

overloading a user with too much visual information at one time

You’ll learn all of this while creating the simple GUI in Figure 6-5.

Figure 6-5. The contact form GUI. The Profile Details tab (left) contains two
labels and two line edit widgets as well as a group box with two radio buttons. The
Background tab (right) consists of a group box with five radio buttons

The next few sections will discuss the new PyQt classes that we are going to use to

build the application in Figure 6-5.

Chapter 6 Styling your guiS

176

 The QRadioButton Widget
The QRadioButton class allows you to create option buttons that can be switched on

when checked or off when unchecked. Radio buttons consist of a round button and a

corresponding label or icon and are great for situations where you need to provide a user

with multiple choices but only one choice can be checked at a time. As the user selects a

new radio button, the other radio buttons are unchecked.

To do so, you need to place multiple radio buttons in a parent widget. Those buttons

will then become autoexclusive, meaning they automatically become members of a

mutually exclusive group. If one radio button is checked inside of the parent, all of the

other buttons will become unchecked. This functionality can be changed by setting the

value of the QRadioButton method setAutoExclusive() to False.

Multiple exclusive groups of radio buttons can also be placed into the same parent

widget by using the QButtonGroup class to separate and manage the different groups.

Refer back to Chapter 4 for information about QButtonGroup.

Radio buttons are similar to the QCheckBox class when emitting signals. A radio

button emits the toggled signal when checked on or off and can be connected to this

signal to trigger a slot.

 The QGroupBox Class
The QGroupBox container is a rectangular frame used for grouping widgets together. A

group box has a border with a title on the top. The title can also be checkable so that

the child widgets inside the group box can be enabled or disabled when checked or

unchecked.

A group box object can contain any kind of widget. Since QGroupBox does not

automatically arrange its child widgets, you will also need to apply a layout manager.

The following block of code is a brief example of how to use QGroupBox:

The title for the group box is passed as an argument

effects_gb = QGroupBox("Effects")

Create two QRadioButton objects to arrange in the group box

effect1_rb = QRadioButton("Strikethrough")

effect2_rb = QRadioButton("Outline")

Create a layout for the group box

gb_h_box = QHBoxLayout()

Chapter 6 Styling your guiS

177

gb_h_box.addWidget(effect1_rb)

gb_h_box.addWidget(effect2_rb)

Set the layout for the group box

effects_gb.setLayout(gb_h_box)

Let’s have a look at the final class for creating a tabbed user interface.

 The QTabWidget Class
Sometimes, you may need to organize related information onto separate pages rather

than creating a cluttered GUI. The QTabWidget class provides a tab bar with an area

under each tab (referred to as a page) to present information and widgets related to

each tab. Only one page is displayed at a time, and the user can view a different page by

clicking on the tab or by using a shortcut (if one is set for the tab).

There are a few different ways to interact with and keep track of the different

tabs. For example, if the user switches to a different tab, the index of the current

tab can be returned when the currentChanged signal is emitted. You can also

return a current page’s index with currentIndex(), or the widget of the current

page with currentWidget(). A tab can also be enabled or disabled with the

setTabEnabled() method.

Tip if you want to create an interface with multiple pages, but without the tab
bar, then you should consider using a QStackedWidget. however, if you do use
QStackedWidget, you will need to provide some other means to switch between
the windows, such as QComboBox or QListWidget, since there are no tabs.

The following example creates a simple application that includes QRadioButton,

QGroupBox, QTabWidget, and a few other classes. The program shows how to set up a

tabbed interface and how to organize other widgets on the different pages.

 Explanation for Using Containers and Tabs
We’ll use the basic_window.py script to get started with this application. Begin by

importing the necessary classes in Listing 6-8, including QRadioButton, QTabWidget, and

Chapter 6 Styling your guiS

178

QGroupBox from the QtWidgets module. Next, set up the MainWindow class and initialize

its minimum size and title.

Listing 6-8. Setting up the main window for using containers and tabbed widgets

containers.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QRadioButton, QGroupBox, QLineEdit, QTabWidget,

 QHBoxLayout, QVBoxLayout)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(400, 300)

 self.setWindowTitle("Containers Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Following that step, we need to set up the tab widget in setUpMainWindow(). You’ll

need to first create an instance of QTabWidget. We’ll create the object, tab_bar, in

Listing 6-9.

Listing 6-9. The setUpMainWindow() method for using containers and

tabbed widgets

containers.py

 def setUpMainWindow(self):

Chapter 6 Styling your guiS

179

 """Create and arrange widgets in the main window.

 Set up tab bar and different tab widgets."""

 # Create tab bar and different page containers

 tab_bar = QTabWidget(self)

 self.prof_details_tab = QWidget()

 self.background_tab = QWidget()

 tab_bar.addTab(self.prof_details_tab,

 "Profile Details")

 tab_bar.addTab(self.background_tab, "Background")

 # Call methods to create the pages

 self.profileDetailsTab()

 self.backgroundTab()

 # Create the layout for main window

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(tab_bar)

 self.setLayout(main_h_box)

The next task is to create a container for each page. You could use QGroupBox or some

other container class. For the purpose of this GUI, let’s use QWidget. There are two tabs

for this project, prof_details_tab and background_tab. Insert the two pages into tab_

bar using addTab(). Be sure to also give each tab an appropriate label.

We’ll need to create two methods to create the different pages, profileDetailsTab()

and backgroundTab(), and call them in setUpMainWindow(). Finally, arrange tab_bar in

the window. Listings 6-10 and 6-11 will set up the pages.

Listing 6-10. Code for the profileDetailsTab() page

containers.py

 def profileDetailsTab(self):

 """Profile page allows the user to enter their name,

 address, and select their gender."""

 # Set up labels and line edit widgets

 name_label = QLabel("Name")

 name_edit = QLineEdit()

Chapter 6 Styling your guiS

180

 address_label = QLabel("Address")

 address_edit = QLineEdit()

 # Create radio buttons and their layout manager

 male_rb = QRadioButton("Male")

 female_rb = QRadioButton("Female")

 gender_h_box = QHBoxLayout()

 gender_h_box.addWidget(male_rb)

 gender_h_box.addWidget(female_rb)

 # Create group box to contain radio buttons

 gender_gb = QGroupBox("Gender")

 gender_gb.setLayout(gender_h_box)

 # Add all widgets to the profile details page layout

 tab_v_box = QVBoxLayout()

 tab_v_box.addWidget(name_label)

 tab_v_box.addWidget(name_edit)

 tab_v_box.addStretch()

 tab_v_box.addWidget(address_label)

 tab_v_box.addWidget(address_edit)

 tab_v_box.addStretch()

 tab_v_box.addWidget(gender_gb)

 # Set layout for profile details tab

 self.prof_details_tab.setLayout(tab_v_box)

The first page includes a few widgets for collecting a user’s general information. You

can refer back to Figure 6-5 to see how each page looks. The labels and line edit widgets

are set up like normal. For the QRadioButton objects that ask about the user’s gender,

they are added to a QGroupBox, gender_gb, to make them mutually exclusive. The last

step is to arrange the child widgets in a layout and call the method setLayout() for

prof_details_tab to finish creating the page.

Chapter 6 Styling your guiS

181

The backgroundTab() method in Listing 6-11 uses a for loop to instantiate each

QRadioButton and add them to the page’s layout.

Listing 6-11. Code for the backgroundTab() page

containers.py

 def backgroundTab(self):

 """Background page lets users select their educational

 background."""

 # Layout for education_gb

 ed_v_box = QVBoxLayout()

 # Create and add radio buttons to ed_v_box

 education_list = ["High School Diploma",

 "Associate's Degree”, "Bachelor's Degree",

 "Master's Degree", "Doctorate or Higher"]

 for ed in education_list:

 self.education_rb = QRadioButton(ed)

 ed_v_box.addWidget(self.education_rb)

 # Set up group box to hold radio buttons

 self.education_gb = QGroupBox(

 "Highest Level of Education")

 self.education_gb.setLayout(ed_v_box)

 # Create and set for background tab

 tab_v_box = QVBoxLayout()

 tab_v_box.addWidget(self.education_gb)

 # Set layout for background tab

 self.background_tab.setLayout(tab_v_box)

Chapter 6 Styling your guiS

182

With a basic understanding of style sheets and a few new PyQt classes, it’s now time

to apply what you have learned to create a new GUI project.

 Project 6.1 – Food Ordering GUI
Food delivery service apps are everywhere. On your phone, on the Internet, and even on

kiosks when you go into the actual restaurants themselves. They simplify the ordering

process while also giving the user a feeling of control over their choices, asking us to

select our own foods and items as we scroll through a list of organized categories.

These types of GUIs may possibly need to contain hundreds of different items that fit

into multiple groups. Rather than just throwing all of the products into the interface and

letting the user waste their own time sorting through the items, goods are usually placed

into categories often differentiated by tabs. These tabs contain titles for the products that

can be found on those corresponding pages, such as Frozen Foods or Fruits/Vegetables.

The GUI in this project allows the user to place an order for a pizza. It lays a

foundation for a food ordering application using tab widgets to organize items onto

separate pages. The project also shows how you can use style sheets to give a GUI made

using PyQt a more aesthetic appearance. The tabbed interface can be seen in Figure 6-6.

Chapter 6 Styling your guiS

183

Figure 6-6. The food ordering GUI. The GUI contains two tabs, Pizza (top) and
Wings (bottom), to separate the types of food a customer can see at one time. The
choices, which are QRadioButton widgets, that can be selected are separated using
QGroupBox widgets. The main window has a red background, and each tab has a
tan background. These colors and other styles are created with a style sheet

Chapter 6 Styling your guiS

184

 Design the Food Ordering GUI
This application consists of two main tabs as seen in Figure 6-7, but more could be

easily added. Each tab consists of a QWidget that acts as a container for all the other

widgets. The first tab, Pizza, contains an image and text to convey the purpose of the

tab to the user. This is followed by two QGroupBox widgets that each consist of a number

of QRadioButton widgets. While the radio buttons in the Crust group box are mutually

exclusive, the ones in the Toppings group box are not. This is done so that the user can

select multiple toppings at one time.

Figure 6-7. The design for the food ordering GUI

The second tab, Wings, is set up in a similar fashion with the Flavor radio buttons

being mutually exclusive.

At the bottom of each page is an Add to Order QPushButton that will update the

user’s order in the widget on the right-hand side of the window.

Chapter 6 Styling your guiS

185

 Explanation for the Food Ordering GUI
This GUI does not contain a menu bar, so we’ll once again use the basic_window.py

script as the foundation for the application and the MainWindow class in Listing 6-12.

Listing 6-12. Setting up the main window for the food ordering GUI

food_order.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QRadioButton, QButtonGroup, QTabWidget,

 QGroupBox, QVBoxLayout, QHBoxLayout, QGridLayout)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QPixmap

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(700, 700)

 self.setWindowTitle("6.1 – Food Order GUI")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = MainWindow()

 sys.exit(app.exec())

There are quite a few imports for this GUI, but they have all been discussed in

this chapter or in previous ones. Notice how the embedded style sheet for the food

ordering GUI that we will create in the following section is imported with app.

setStyleSheet(style_sheet).

Chapter 6 Styling your guiS

186

 Creating the Style Sheet

If a style sheet is not applied to the food ordering GUI, then it will use your system’s

native settings to style the application. Figure 6-8 shows what this looks like on macOS.

Figure 6-8. The food ordering GUI before the style sheet is applied

Chapter 6 Styling your guiS

187

In the beginning of the program, you will need to create the style_sheet instance

that holds all of the different style specifications for the different widgets. To begin, we

can specify a general red background color, #C92108, which is used for the main window

in Listing 6-13.

Listing 6-13. Setting up the style sheet for the food ordering GUI, part 1

food_order.py

Set up style sheet for the entire GUI

style_sheet = """

 QWidget{

 background-color: #C92108;

 }

 QWidget#Tabs{

 background-color: #FCEBCD;

 border-radius: 4px

 }

 QWidget#ImageBorder{

 background-color: #FCF9F3;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 border-color: #FABB4C

 }

 QWidget#Side{

 background-color: #EFD096;

 border-radius: 4px

 }

But if a QWidget has a specified ID Selector such as #Tabs, then it will get a tan

background, #FCEBCD, and rounded corners. Widgets with these properties are used to

style the pages for each tab.

The QWidget instances with the ID Selector #ImageBorder are created with an

off- white background for containing the labels that display information to the user

about each page.

Chapter 6 Styling your guiS

188

The last QWidget selector with ID Selector #Side defines the settings for the side bar.

In Listing 6-14, create a general style for QLabel widgets, followed by a style for labels

that appear as headers on each page. Take note that it is possible to specify a padding

value for all four sides of a widget using padding, or for individual sides with padding-

left, padding-top, and so on.

Listing 6-14. Setting up the style sheet for the food ordering GUI, part 2

food_order.py

 QLabel{

 background-color: #EFD096;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 border-color: #EFD096

 }

 QLabel#Header{

 background-color: #EFD096;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 border-color: #EFD096;

 padding-left: 10px;

 color: #961A07

 }

 QLabel#ImageInfo{

 background-color: #FCF9F3;

 border-radius: 4px;

 }

 QGroupBox{

 background-color: #FCEBCD;

 color: #961A07

 }

Chapter 6 Styling your guiS

189

 QRadioButton{

 background-color: #FCF9F3

 }

 QPushButton{

 background-color: #C92108;

 border-radius: 4px;

 padding: 6px;

 color: #FFFFFF

 }

 QPushButton:pressed{

 background-color: #C86354;

 border-radius: 4px;

 padding: 6px;

 color: #DFD8D7

 }

"""

The QLabel selectors with #ImageInfo are for the informational images and text on

each page. To finish off the style sheet, there are styles for the QGroupBox, QRadioButton,

and QPushButton objects.

We can now begin to tackle creating the MainWindow method setUpMainWindow().

 Building the Main Window

To get started, create the structure for the tabs and layout for the main window in

Listing 6-15. Set up instances of the QTabWidget and QWidget objects that will be used

for the pages of the tabs. The two tabs are the pizza_tab, to display choices for building

your own pizza, and the wings_tab, to show choices for wing flavors.

Listing 6-15. Setting up the main window for the food ordering GUI, part 1

food_order.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create tab bar, different tabs, and set object names

 self.tab_bar = QTabWidget()

Chapter 6 Styling your guiS

190

 self.pizza_tab = QWidget()

 self.pizza_tab.setObjectName("Tabs")

 self.wings_tab = QWidget()

 self.wings_tab.setObjectName("Tabs")

 self.tab_bar.addTab(self.pizza_tab, "Pizza")

 self.tab_bar.addTab(self.wings_tab, "Wings")

 # Call methods that contain the widgets for each tab

 self.pizzaTab()

 self.wingsTab()

Some of the widgets in this GUI are given an ID Selector using the setObjectName()

method. For example, pizza_tab is given the #Tabs ID Selector. This name is used in the

application’s style sheet to differentiate this widget from other QWidget objects with a

different style.

Listing 6-16 shows how to build the side bar. The side_widget is used to give

feedback to users of their choices and can be seen even if the user switches tabs.

Listing 6-16. Setting up the main window for the food ordering GUI, part 2

food_order.py

 # Create side bar in the main window

 self.side_widget = QWidget()

 self.side_widget.setObjectName("Tabs")

 order_label = QLabel("YOUR ORDER")

 order_label.setObjectName("Header")

 items_box = QWidget()

 items_box.setObjectName("Side")

 pizza_label = QLabel("Pizza Type: ")

 self.display_pizza_label = QLabel("")

 toppings_label = QLabel("Toppings: ")

 self.display_toppings_label = QLabel("")

 extra_label = QLabel("Extra: ")

 self.display_wings_label = QLabel("")

Chapter 6 Styling your guiS

191

 # Set grid layout for objects in side widget

 items_grid = QGridLayout()

 items_grid.addWidget(pizza_label, 0, 0,

 Qt.AlignmentFlag.AlignRight)

 items_grid.addWidget(self.display_pizza_label, 0, 1)

 items_grid.addWidget(toppings_label, 1, 0,

 Qt.AlignmentFlag.AlignRight)

 items_grid.addWidget(self.display_toppings_label,

 1, 1)

 items_grid.addWidget(extra_label, 2, 0,

 Qt.AlignmentFlag.AlignRight)

 items_grid.addWidget(self.display_wings_label, 2, 1)

 items_box.setLayout(items_grid)

Labels that are meant to display a user’s choices will initially display an empty string.

All of the children for side_widget are arranged in a nested layout and added to the

main QHBoxLayout in Listing 6-17.

Listing 6-17. Setting up the main window for the food ordering GUI, part 3

food_order.py

 # Set main layout for side widget

 side_v_box = QVBoxLayout()

 side_v_box.addWidget(order_label)

 side_v_box.addWidget(items_box)

 side_v_box.addStretch()

 self.side_widget.setLayout(side_v_box)

 # Add widgets to main window and set layout

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.tab_bar, 1)

 main_h_box.addWidget(self.side_widget)

 self.setLayout(main_h_box)

The pizzaTab() method, built in Listings 6-18 and 6-19, creates and arranges the

child widgets for the first tab, pizza_tab. The top of the first page gives users information

about the purpose of the tab using images and text. The radio buttons that display the

pizza crust choices are also instantiated.

Chapter 6 Styling your guiS

192

Listing 6-18. Code for the pizzaTab() page, part 1

food_order.py

 def pizzaTab(self):

 """Create the pizza tab. Allows the user to select

 the pizza type and toppings using radio buttons."""

 # Set up widgets and layouts to display information

 # to the user about the page

 tab_pizza_label = QLabel("BUILD YOUR OWN PIZZA")

 tab_pizza_label.setObjectName("Header")

 description_box = QWidget()

 description_box.setObjectName("ImageBorder")

 pizza_image_path = "images/pizza.png"

 pizza_image = self.loadImage(pizza_image_path)

 pizza_desc = QLabel()

 pizza_desc.setObjectName("ImageInfo")

 pizza_desc.setText(

 """<p>Build a custom pizza for you. Start with

 your favorite crust and add any toppings, plus

 the perfect amount of cheese and sauce.</p>""")

 pizza_desc.setWordWrap(True)

 pizza_desc.setContentsMargins(10, 10, 10, 10)

 pizza_h_box = QHBoxLayout()

 pizza_h_box.addWidget(pizza_image)

 pizza_h_box.addWidget(pizza_desc, 1)

 description_box.setLayout(pizza_h_box)

 # Create group box that will contain crust choices

 crust_gbox = QGroupBox()

 crust_gbox.setTitle("CHOOSE YOUR CRUST")

 # The group box is used to group the widgets together,

 # while the button group is used to get information

 # about which radio button is checked

 self.crust_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

Chapter 6 Styling your guiS

193

 crust_list = ["Hand-Tossed", "Flat", "Stuffed"]

 # Create radio buttons for the different crusts and

 # add to layout

 for cr in crust_list:

 crust_rb = QRadioButton(cr)

 gb_v_box.addWidget(crust_rb)

 self.crust_group.addButton(crust_rb)

 crust_gbox.setLayout(gb_v_box)

Be sure to follow along with the comments in Listing 6-18 to understand how the

page is structured. QRadioButton widgets are grouped together using group boxes. This

allows each group to have a title. The QGroupBox class does provide exclusivity to radio

buttons, but to get the type of functionality to find out which buttons are checked and

return their text values, the QRadioButton objects are also grouped using QButtonGroup.

Refer to Chapter 4 for more information about QButtonGroup.

The code in Listing 6-19 sets up the QRadioButton objects that display the pizza

topping selections.

Listing 6-19. Code for the pizzaTab() page, part 2

food_order.py

 # Create group box that will contain toppings choices

 toppings_gbox = QGroupBox()

 toppings_gbox.setTitle("CHOOSE YOUR TOPPINGS")

 # Set up button group for toppings radio buttons

 self.toppings_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

 toppings_list = ["Pepperoni", "Sausage", "Bacon",

 "Canadian Bacon", "Beef", "Pineapple",

 "Olive", "Tomato", "Green Pepper",

 "Mushroom", "Onion", "Spinach",

 "Cheese"]

 # Create radio buttons for the different toppings and

 # add to layout

Chapter 6 Styling your guiS

194

 for top in toppings_list:

 toppings_rb = QRadioButton(top)

 gb_v_box.addWidget(toppings_rb)

 self.toppings_group.addButton(toppings_rb)

 self.toppings_group.setExclusive(False)

 toppings_gbox.setLayout(gb_v_box)

 # Create button to add information to side widget

 # when clicked

 add_to_order_button1 = QPushButton("Add To Order")

 add_to_order_button1.clicked.connect(

 self.displayPizzaInOrder)

 # Create layout for pizza tab (page 1)

 page1_v_box = QVBoxLayout()

 page1_v_box.addWidget(tab_pizza_label)

 page1_v_box.addWidget(description_box)

 page1_v_box.addWidget(crust_gbox)

 page1_v_box.addWidget(toppings_gbox)

 page1_v_box.addStretch()

 page1_v_box.addWidget(add_to_order_button1,

 alignment=Qt.AlignmentFlag.AlignRight)

 self.pizza_tab.setLayout(page1_v_box)

While only one radio button can be selected in crust_group in Listing 6-18,

users need to be able to select more than one topping. This is achieved by using the

setExclusive() method to set the exclusivity of toppings_group to False.

The wingsTab() method in Listings 6-20 and 6-21 is set up in a similar manner to

pizzaTab().

Listing 6-20. Code for the wingsTab() page, part 1

food_order.py

 def wingsTab(self):

 """Create the wings tab. Allows the user to select

 the pizza type and toppings using radio buttons."""

 # Set up widgets and layouts to display information

Chapter 6 Styling your guiS

195

 # to the user about the page

 tab_wings_label = QLabel("TRY OUR AMAZING WINGS")

 tab_wings_label.setObjectName("Header")

 description_box = QWidget()

 description_box.setObjectName("ImageBorder")

 wings_image_path = "images/wings.png"

 wings_image = self.loadImage(wings_image_path)

 wings_desc = QLabel()

 wings_desc.setObjectName("ImageInfo")

 wings_desc.setText(

 """<p>6 pieces of rich-tasting, white meat

 chicken that will have you coming back for

 more.</p>""")

 wings_desc.setWordWrap(True)

 wings_desc.setContentsMargins(10, 10, 10, 10)

 wings_h_box = QHBoxLayout()

 wings_h_box.addWidget(wings_image)

 wings_h_box.addWidget(wings_desc, 1)

 description_box.setLayout(wings_h_box)

The widgets for selecting wings are organized and added to wings_tab in

Listing 6-21.

Listing 6-21. Code for the wingsTab() page, part 2

food_order.py

 wings_gbox = QGroupBox()

 wings_gbox.setTitle("CHOOSE YOUR FLAVOR")

 self.wings_group = QButtonGroup()

 gb_v_box = QVBoxLayout()

 flavors_list = [

 "Buffalo", "Sweet-Sour", "Teriyaki", "Barbecue"]

 # Create radio buttons for the different flavors and

 # add to layout

Chapter 6 Styling your guiS

196

 for fl in flavors_list:

 flavor_rb = QRadioButton(fl)

 gb_v_box.addWidget(flavor_rb)

 self.wings_group.addButton(flavor_rb)

 wings_gbox.setLayout(gb_v_box)

 # Create button to add information to side widget

 # when clicked

 add_to_order_button2 = QPushButton("Add To Order")

 add_to_order_button2.clicked.connect(

 self.displayWingsInOrder)

 # create layout for wings tab (page 2)

 page2_v_box = QVBoxLayout()

 page2_v_box.addWidget(tab_wings_label)

 page2_v_box.addWidget(description_box)

 page2_v_box.addWidget(wings_gbox)

 page2_v_box.addWidget(add_to_order_button2,

 alignment=Qt.AlignmentFlag.AlignRight)

 page2_v_box.addStretch()

 self.wings_tab.setLayout(page2_v_box)

If users press the add_to_order_button on either page (either 1 or 2), the text from

the selected radio buttons on that page are displayed in the side_widget using one of

the two methods in Listing 6-22.

Listing 6-22. Code for updating the side bar in the food ordering GUI

food_order.py

 def displayPizzaInOrder(self):

 """Collect the text from the radio buttons that are

 checked on the pizza page. Display text in side

 widget."""

 if self.crust_group.checkedButton():

 text = self.crust_group.checkedButton().text()

 self.display_pizza_label.setText(text)

Chapter 6 Styling your guiS

197

 toppings = self.collectToppingsInList()

 toppings_str = '\n'.join(toppings)

 self.display_toppings_label.setText(toppings_str)

 self.update()

 def displayWingsInOrder(self):

 """Collect the text from the radio buttons that are

 checked on the wings page. Display text in side

 widget."""

 if self.wings_group.checkedButton():

 text = self.wings_group.checkedButton().text() +\

 " Wings"

 self.display_wings_label.setText(text)

 self.update()

For displayPizzaInOrder(), we check to see if any of the radio buttons in the

QButtonGroup crust_group are selected. If so, the text from the selected button is

collected and displayed in display_pizza_label using setText(). For display_

toppings_label, all of the selected toppings radio buttons are collected and returned

using collectToppingsInList() in Listing 6-23. The toppings are then depicted in the

label. The update() method is used to ensure that the text is updated accordingly.

Listing 6-23. Code for collecting information about selected radio buttons in the

food ordering GUI

food_order.py

 def collectToppingsInList(self):

 """Create list of all checked radio buttons."""

 toppings_list = [button.text() for i, button in \

 enumerate(self.toppings_group.buttons()) if \

 button.isChecked()]

 return toppings_list

The last method to implement in Listing 6-24, loadImage(), loads and scales the

pizza and wing images used on the two pages.

Chapter 6 Styling your guiS

198

Listing 6-24. Code for loading images in the food ordering GUI

food_order.py

 def loadImage(self, img_path):

 """Load and scale images."""

 aspect = Qt.AspectRatioMode.KeepAspectRatioByExpanding

 transform = Qt.TransformationMode.SmoothTransformation

 try:

 with open(img_path):

 image = QLabel(self)

 image.setObjectName("ImageInfo")

 pixmap = QPixmap(img_path)

 image.setPixmap(pixmap.scaled(image.size(),

 aspect, transform))

 return image

 except FileNotFoundError as error:

 print(f"Image not found. Error: {error}")

A fairly long project, the food ordering GUI demonstrates just how intensive an

interface can be to style. The next step could be to add more tabs and options as a way to

practice building stylized tabbed interfaces or even use the Qt documentation to modify

the properties of the GUI.

 CSS Properties Reference
Table 6-2 lists the CSS properties found throughout this chapter as well as some

commonly used properties you may need for your early projects.

Chapter 6 Styling your guiS

199

Table 6-2. Commonly used CSS properties in PyQt

Property Description

background- color Sets the background color for the widget

border Shorthand for setting the border color, style, and width

QLabel {border: 2px groove grey}

border-color Specifies the color of the border for all sides of the widget

border-style Specifies the pattern for drawing the widget’s border. Some of the patterns

are dashed, dotted, groove, inset, outset, and solid

border-width Sets the border width for all sides of the widget (in pixels)

border-radius Sets the radius of the widget’s corners (in pixels)

color Specifies the color used for text

font Specifies the font weight, style, size, and family

QLabel {font: bold italic small 'Times'}

image Sets the image used within the widget. Be sure to include

url(path_to_file)

margin Specifies the additional space around the widget (in pixels)

padding Specifies the additional space inside of the widget (in pixels)

 Summary
In this chapter, we saw how to use Qt Style Sheets to modify the appearance of widgets to

better fit the purpose and look of an application. We also saw how HTML can be used to

manipulate the look of text.

The benefits of using style sheets include easier updates to code, greater consistency

in design, simpler way to format the look of widgets, increase in usability, and less

difficulty for a developer to control colors, layouts, and other aesthetic aspects of

UI design.

Chapter 7 will discuss a very important topic – event handling.

Chapter 6 Styling your guiS

201
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_7

CHAPTER 7

Handling Events in PyQt
Since GUIs need to perform tasks, the widgets, windows, and other aspects of the

application need to be able to react to the events that occur. Whether caused by the user

or by the underlying system, the events, and possibly data, need to be delivered to their

appropriate locations and handled accordingly.

In this chapter, you will

• Find out more about signals, slots, and event handling

• Learn how to modify key press and mouse and enter event handlers

• Explore how to create custom signals using pyqtSignal

This chapter is all about handling events and modifying the behaviors of the built-in

functions in PyQt.

 Event Handling in PyQt
Events in Qt are objects created from the QEvent class. The event objects describe

different types of interactions that can occur in a GUI as a result of what happens, either

caused by a user or by some kind of system activity outside of the application. These

events begin once the application’s main event loop starts.

Most events, whether the press of a key, click of a mouse, resizing of a window,

or dragging and dropping of a widget or data, have their own subclass of QEvent that

generates an event object and passes it on to the appropriate QObject by calling the

event() method, which in turn is handled by the suitable event handler. (Recall that

QWidget inherits QObject.) The response from the event is used to determine whether it

was accepted or disregarded.

More information about event handling can be found at https://doc.qt.io/qt- 6/

eventsandfilters.html.

https://doi.org/10.1007/978-1-4842-7999-1_7
https://doc.qt.io/qt-6/eventsandfilters.html
https://doc.qt.io/qt-6/eventsandfilters.html

202

Let’s take a look at signals and slots and event handlers in the following subsections

and think about their purposes and their differences.

 Using Signals and Slots
The concept of signals and slots in PyQt was briefly introduced in Chapter 3. Widgets

in PyQt use signals and slots to communicate between objects. Just like events, signals

can be generated by a user’s actions or by the internal system. Slots are methods that are

executed in response to the signal. For example, when a QPushButton is pressed, it emits

a clicked signal. This signal could be connected to a built-in PyQt slot, such as close()

to allow a user to quit an application, or to a custom-made slot, which is typically a

Python function. Signals are also useful because they can be used to send additional

data to a slot and provide more information about an event.

The clicked signal is but one of many predefined Qt signals. The type of signals that

can be emitted differs according to the widget class. PyQt delivers events to widgets by

calling specific, predefined event handling functions. These can range from functions

related to window operations such as show() or close(), to GUI appearances with

setStyleSheet(), to mouse press and release events, and more.

Have a look at www.riverbankcomputing.com/static/Docs/PyQt6/signals_slots.

html for more information about signals and slots in PyQt6.

 Using Event Handlers to Handle Events
Event handlers are the functions that respond to an event. While a QEvent subclass is

created to deliver the event, a corresponding QWidget method will actually handle the

event. If you remember in Chapter 3, the closeEvent() event handler was used to close

windows. The class that creates the close event object is QCloseEvent.

Note You may not always be able to handle all of the functionality in an
event handler that you modify. When this is the case, you can use an if-else
statement. In the if condition, specify how to react to the event, and in the else
clause, call the base class’s implementation. So for QCloseEvent, you would
include super().closeEvent(event) in the else clause. This portion will take
care of any default behaviors you did not implement or may have missed.

ChapTer 7 handlIng evenTS In pYQT

https://www.riverbankcomputing.com/static/Docs/PyQt6/signals_slots.html
https://www.riverbankcomputing.com/static/Docs/PyQt6/signals_slots.html

203

 Difference Between Signals and Slots and Event Handlers
While there is some overlap between the two, signals and slots are typically used for

communication between the different widgets and other PyQt classes. Events are

generated by an outside activity and delivered through the event loop by QApplication.

Another important difference is that you are notified when a signal is emitted and

take action accordingly. Events need to be handled whenever they occur.

Finally, we can use signals with widgets to improve their capabilities, but you will

need to reimplement event handlers when modifying a widget’s functionalities.

In many cases, you will use signals and slots and event handlers together to

complete tasks.

The following section shows a simple example of how to reimplement the

keyPressEvent() function.

 Handling Key Events
When keys are pressed or released, a QKeyEvent is created. Key events are sent to the

widget that currently has keyboard focus. We can then reimplement the following

QWidget key event handlers to deal with the event:

• keyPressEvent() – Handles a key event when the key is pressed

• keyReleaseEvent() – Handles a key event when the key is released

Figure 7-1 shows the GUI that we’ll code, which demonstrates how to modify

keyPressEvent().

ChapTer 7 handlIng evenTS In pYQT

204

Figure 7-1. A window that closes when the user presses the Escape key

Some key names include Key_Escape, Key_Return, Key_Up, Key_Down, Key_Space,

Key_0, Key_1, and so on. A full list of Qt.Key enum keyboard codes can be found at

https://doc.qt.io/qt- 6/qt.html#Key- enum.

 Explanation for Handling Key Events
For Listing 7-1, we’ll create a simple MainWindow class that inherits QMainWindow.

The imports for this application are also fairly simple. The MainWindow class inherits

QMainWindow so that we don’t have to import any layout managers for the single

QLabel object.

Listing 7-1. Code to demonstrate how to modify key event handlers

key_events.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QMainWindow, QLabel

from PyQt6.QtCore import Qt

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

ChapTer 7 handlIng evenTS In pYQT

https://doc.qt.io/qt-6/qt.html#Key-enum

205

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 300, 200)

 self.setWindowTitle("Event Handling Example")

 info_label = QLabel(

 """<p align='center'>Press the ESC key

 to close the window.</p>""")

 self.setCentralWidget(info_label)

 self.show()

 def keyPressEvent(self, event):

 """Reimplement the key press event to close the

 window."""

 if event.key() == Qt.Key.Key_Escape:

 print("Application closed.")

 self.close()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Whenever a user presses a key on the keyboard, it sends a signal to the computer. If

you want to give certain keys abilities, then you will need to use the keyPressEvent().

The keyPressEvent() function checks for events, which in this case are the signals

being sent from keys. If the key pressed is the Escape key, then the application calls the

close() function to quit the application. Different keys can be accessed using Qt.Key,

and you can use those different keys to perform any number of actions.

 Handling Mouse Events
Mouse events are handled by the QMouseEvent class. For mouse events, we need to be

able to find out when a mouse button is pressed, released, and double-clicked and when

the mouse moves while clicked. There is also an event class, QEnterEvent, that is useful

for finding out if the mouse has entered or left the window or a particular widget. Enter

events are also useful for collecting information about the mouse cursor’s position.

ChapTer 7 handlIng evenTS In pYQT

206

The QWidget mouse event handlers we’ll be using include the following:

• mousePressEvent() – Handles events when the mouse button is

pressed.

• mouseReleaseEvent() – Handles events when the mouse button is

released.

• mouseMoveEvent() – Handles events when the mouse button

is pressed and moved. Turn on mouse tracking to enable move

events even if a mouse button is not pressed with QWidget.

setMouseTracking(True).

• mouseDoubleClickEvent() – Handles events when the mouse

button is double-clicked.

For the enter events, we’ll use the following event handlers:

• enterEvent() – Handles when the mouse cursor enters a widget

• leaveEvent() – Handles when the mouse cursor leaves a widget

For the GUI in Figure 7-2, there is only the image in the left window without any

textual information when the program first starts. When a mouse enters the main

window, the image in the window will change to what is shown in the right screenshot

in Figure 7-2. If the user clicks or releases the mouse button, a label in the widget will

update to let them know which mouse button, left or right, was used. Double-clicking

in the window will change the image. Lastly, the x and y coordinates of the mouse’s

position are displayed on the screen when the mouse is pressed and moving.

ChapTer 7 handlIng evenTS In pYQT

207

Figure 7-2. The images and information in the window change based on the
mouse events. Images from https://pixabay.com

Be sure to download the images folder from the GitHub repository for this example.

 Explanation for Handling Mouse Events
For this example, we can use the basic_window.py script from Chapter 1. In Listing 7-2,

let’s set up the main window and the setUpMainWindow() method. The window consists

of three QLabel objects, one for displaying images and the other two for relaying

information about the mouse events to the user.

Listing 7-2. Code for setting up the main window in the modifying mouse event

handlers example

mouse_events.py

Import necessary modules

import sys

ChapTer 7 handlIng evenTS In pYQT

https://pixabay.com

208

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QVBoxLayout)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QPixmap

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(400, 300)

 self.setWindowTitle("Event Handling Example")

 self.setUpMainWindow()

 self.show()

 def setUpMainWindow(self):

 self.image_label = QLabel()

 self.image_label.setPixmap(QPixmap("images/back.png"))

 self.image_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 self.info_label = QLabel("")

 self.info_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 self.pos_label = QLabel("")

 self.pos_label.setAlignment(

 Qt.AlignmentFlag.AlignCenter)

 main_h_box = QVBoxLayout()

 main_h_box.addStretch()

 main_h_box.addWidget(self.image_label)

 main_h_box.addStretch()

 main_h_box.addWidget(self.info_label)

 main_h_box.addWidget(self.pos_label)

 self.setLayout(main_h_box)

ChapTer 7 handlIng evenTS In pYQT

209

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The addStretch() method is used before and after image_label in main_h_box to

make sure the images stay centered in the window.

Whenever the mouse cursor enters a window, image_label will display a different

image. To change the image back, we can use leaveEvent() to check when the mouse

has left the widget. This is done in Listing 7-3.

Listing 7-3. Code for the enterEvent() and leaveEvent() event handlers

mouse_events.py

 def enterEvent(self, event):

 self.image_label.setPixmap(

 QPixmap("images/front.png"))

 def leaveEvent(self, event):

 self.image_label.setPixmap(QPixmap("images/back.png"))

In PyQt6, QMouseEvent inherits a few methods from QPointerEvent that can provide

more information about which mouse buttons are clicked or where the mouse is in the

window or on the computer screen. These include the following:

• button() – Returns which button caused the event.

• buttons() – Returns the state of the buttons, giving access to which

combination of buttons caused the event using an OR operator.

• globalPosition() – Returns the point coordinates of the event on

the computer screen.

• position() – Returns the current point coordinates of the mouse

relative to the widget that caused the event. The values returned refer

to points within the window or widget.

Both globalPosition() and position() have x() and y() methods for collecting

horizontal or vertical values. We’ll use a few of these methods in Listing 7-4.

ChapTer 7 handlIng evenTS In pYQT

210

Listing 7-4. Code that demonstrates how to modify mouse event handlers

mouse_events.py

 def mouseMoveEvent(self, event):

 """Print the mouse position while clicked and

 moving."""

 if self.underMouse():

 self.pos_label.setText(

 f"""<p>X:{event.position().x()},

 Y:{event.position().y()}</p>""")

 def mousePressEvent(self, event):

 """Determine which button was clicked."""

 if event.button() == Qt.MouseButton.LeftButton:

 self.info_label.setText("Left Click")

 if event.button() == Qt.MouseButton.RightButton:

 self.info_label.setText("Right Click")

 def mouseReleaseEvent(self, event):

 """Determine which button was released."""

 if event.button() == Qt.MouseButton.LeftButton:

 self.info_label.setText(

 "Left Button Released")

 if event.button() == Qt.MouseButton.RightButton:

 self.info_label.setText(

 "Right Button Released")

 def mouseDoubleClickEvent(self, event):

 self.image_label.setPixmap(QPixmap("images/boom.png"))

The mouse’s x and y values are displayed in pos_label using position() in

mouseMoveEvent(). For mousePressEvent(), we’ll simply update the text of info_label

depending upon which mouse button is clicked. The mouseReleaseEvent() will do

something similar, but when the button is released. For mouseDoubleClickEvent(),

pixmap is updated to look like Figure 7-3. Moving the mouse out of the window causes

leaveEvent() to be called, showing the images in Figure 7-2 again.

ChapTer 7 handlIng evenTS In pYQT

211

Figure 7-3. The image in the screen changes when the mouse is double-clicked

After seeing how to modify event handlers, now is a good time to learn how to create

your own signals.

 Creating Custom Signals
We have taken a look at some of PyQt’s predefined signals and slots in previous chapters.

For many of those applications, we have also seen how to create custom slots to handle

the signals emitted from widgets. The custom slots were simply Python functions or

methods.

Now let’s see how we can create custom signals using pyqtSignal to change a

widget’s style sheet. Using pyqtSignal, new signals can be defined for a class. Just like

predefined signals, you can also pass types of information, such as Python strings,

integers, dictionaries, or lists, as arguments to the pyqtSignal you create.

ChapTer 7 handlIng evenTS In pYQT

212

For the GUI in Figure 7-4, a user can change the background color of the lower

QLabel widget by pressing the up or down arrow keys on their keyboard. A closed signal,

one that takes no arguments, will be emitted when a key is pressed.

Figure 7-4. The color of the label will change when the up and down arrows
are pressed

 Explanation for Creating Custom Signals
This example creates a simple GUI with a QLabel object as the central widget of the main

window. The pyqtSignal factory and QObject classes are imported from the QtCore

module. The QtCore module and QObject class provide the mechanics for signals

and slots.

Before creating the MainWindow class in Listing 7-5, we’ll first create a class,

SendSignal, that inherits QObject.

Listing 7-5. Creating a custom signal to change the background color of a

QLabel widget

custom_signal.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QLabel, QVBoxLayout)

from PyQt6.QtCore import Qt, pyqtSignal, QObject

ChapTer 7 handlIng evenTS In pYQT

213

class SendSignal(QObject):

 """Define a signal, change_style, that takes no

 arguments."""

 change_style = pyqtSignal()

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 300, 200)

 self.setWindowTitle("Create Custom Signals")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The SendSignal class creates a new signal called change_style from the pyqtSignal

factory. To use this signal, we’ll first need to create an instance of SendSignal, simply

called sig, in Listing 7-6. To use the custom signal you created, call the change_style

instance from sig, and use connect() to connect the signal to a slot, in this case,

changeBackground().

Listing 7-6. Code for the setUpMainWindow() method

custom_signal.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.index = 0 # Index of items in list

 self.direction = ""

ChapTer 7 handlIng evenTS In pYQT

214

 # Create instance of SendSignal class, and

 # connect change_style signal to a slot

 self.sig = SendSignal()

 self.sig.change_style.connect(self.changeBackground)

 header_label = QLabel(

 """<p align='center'>Press the up and

 down arrows.</p>""")

 self.colors_list = ["red", "orange", "yellow",

 "green", "blue", "purple"]

 self.label = QLabel()

 self.label.setStyleSheet(f"""background-color:

 {self.colors_list[self.index]}""")

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(header_label)

 main_v_box.addWidget(self.label)

 container = QWidget()

 container.setLayout(main_v_box)

 self.setCentralWidget(container)

The rest of setUpMainWindow() instantiates the two QLabel widgets and creates a list

of colors that are used by label to specify the background in its style sheet.

This signal will be emitted whenever the user presses either the up arrow key or the

down arrow key in keyPressEvent().

When the user presses Key_Up, direction is set equal to "up", and a change_style

signal is emitted. To emit a custom signal, you’ll need to call emit() at the point in your

application where the signal needs to be triggered. An example for sig is shown in the

following line:

 self.sig.change_style.emit()

This signal is connected to the changeBackground() slot that updates the color

of the label by checking the index of colors_list and updating the color using

setStyleSheet() in Listing 7-7.

ChapTer 7 handlIng evenTS In pYQT

215

Listing 7-7. Code for handling keyPressEvent() and the slot for changing the

background color

custom_signal.py

 def keyPressEvent(self, event):

 """Reimplement how the key press event is handled."""

 if event.key() == Qt.Key.Key_Up:

 self.direction = "up"

 self.sig.change_style.emit()

 elif event.key() == Qt.Key.Key_Down:

 self.direction = "down"

 self.sig.change_style.emit()

 def changeBackground(self):

 """Change the background of the label widget when

 a keyPressEvent signal is emitted."""

 if self.direction == "up" and \

 self.index < len(self.colors_list) - 1:

 self.index = self.index + 1

 self.label.setStyleSheet(f"""background-color:

 {self.colors_list[self.index]}""")

 elif self.direction == "down" and self.index > 0:

 self.index = self.index - 1

 self.label.setStyleSheet(f"""background-color:

 {self.colors_list[self.index]}""")

It works in a similar fashion when the down key is pressed. Remember that custom

signals can take data types as arguments, so don’t worry if you need to pass along

information to your other widgets or classes.

ChapTer 7 handlIng evenTS In pYQT

216

 Summary
Handling events is a critical component of GUI development. With PyQt, this can

be accomplished either through signals and slots or by the event classes and their

corresponding event handlers. Either way, you may often find yourself extending

the abilities of a widget class by creating custom signals using pyqtSignal or

reimplementing the base functionality provided by Qt’s various event handler methods.

We took a look at both these concepts in this chapter, changing the behaviors of key

press and mouse event handlers and creating a custom signal to modify the appearance

of a label.

In the next chapter, we’ll take a look at using the application Qt Designer to create

PyQt applications and simplifying the process for arranging widgets in a GUI window.

ChapTer 7 handlIng evenTS In pYQT

217
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_8

CHAPTER 8

Creating GUIs with Qt
Designer
While building GUIs programmatically gives you more control over the design process,

some development tasks may require a quicker approach. Fortunately, Qt provides a

great interface for arranging widgets and designing main windows, widgets, or dialogs.

The graphical development tool, Qt Designer, is filled with widgets and other tools for

building GUIs. With the application’s drag-and-drop interface, you are able to create and

customize your own Qt or PyQt applications.

The widgets and other applications you create using Qt Designer can interact

with other Qt programs using signals and slots, making it easier to assign behaviors to

widgets. This means that more resources can go into coding the functionality and less

into layout and design.

In this chapter, you will

• Install the Qt Designer application

• Take a look at the different components that comprise the Qt

Designer interface

• Follow along and build an application in Qt Designer, along the way

learning how to apply layouts, edit object properties, connect signals

and slots, and generate Python code

• Learn about new PyQt classes such as QFrame class for grouping widgets

Tip For references or more help beyond the scope of this chapter, check out the
Qt Documentation for Qt Designer at https://doc.qt.io/qt- 6/qtdesigner-
manual.html.

https://doi.org/10.1007/978-1-4842-7999-1_8
https://doc.qt.io/qt-6/qtdesigner-manual.html
https://doc.qt.io/qt-6/qtdesigner-manual.html

218

This chapter serves as an introduction to Qt Designer, providing you with the

fundamentals you need to get started using the application.

 Getting Started with Qt Designer
In this section, we’ll first consider two methods for installing Qt Designer on your

computer. After that, we’ll discuss the layout of the Qt Designer GUI.

 Installing Qt Designer
As of writing, there are two approaches to installing the latest version of Qt Designer, and

they can vary depending upon how much memory you are willing to use.

Your first option is to download the latest version of Qt Creator for Qt 6 from www.

qt.io/download. Qt Designer comes bundled with Qt Creator, which is Qt’s official C++

IDE. Be aware that this method works for macOS, Windows, and Linux, but also means

that you will be installing the entire Qt Creator IDE as well.

On the Qt downloads web page, you’ll need to locate the option for downloading Qt

for open source creators. From there, scroll to the bottom of the page and find the button

that says Download the Qt Online Installer. Once the download completes, you’ll need

to open up the Qt installer software. You’ll need to create a Qt Account and then follow

along with the prompts to install Qt Creator. One thing to note, if you choose to perform

a custom installation, you’ll be able to manually select the software you need and save

some memory. Once the installation is complete, do a search on your computer to locate

Qt Designer.

Another way to install Qt Designer is through PySide6. First, open a shell window

and enter the following command to install PySide6:

$ pip3 install PySide6

Use pip instead of pip3 on Windows.

Next, perform a search on your computer for Qt Designer and open the application.

After opening Qt Designer, you will see a graphical user interface for creating your own

GUIs like the one in Figure 8-1.

Chapter 8 Creating gUis with Qt Designer

https://www.qt.io/download
https://www.qt.io/download

219

Figure 8-1. The Qt Designer interface

Tip You can change the appearance of the Qt Designer window. in the menu bar,
locate the preferences… menu option, and in the dialog box that appears, look for
User interface Mode. You can select two appearances: Multi top-Level windows
or Docked windows. the multilevel layout is great for arranging all of the widgets
freely on larger screens.

Before you create your first application, let’s get to know the different menus, tools,

and modes that are displayed in the main window in Figure 8-1.

 Exploring Qt Designer’s User Interface
When you first open up Qt Designer, you will notice a dialog in the center of the window

with the title New Form. This dialog can be seen in Figure 8-2. From here, you can select

a template for creating a main window, a widget, or different kinds of dialog boxes. You

can also choose what kinds of widgets to add to your project’s layout. Once you have

selected a template and the application’s size, an empty window, also known as a form,

will appear for you to modify.

Chapter 8 Creating gUis with Qt Designer

220

Figure 8-2. The New Form dialog box for selecting what type of form to build

At the top of the main window in Figure 8-1, you will notice Qt Designer’s menu bar

and toolbar for managing and editing your GUI. On the left side of the main window is

the Widget Box dock widget, shown in Figure 8-3, which provides an organized list of

layouts and widgets that can be dragged and dropped onto the required locations of your

GUI. Other features for tinkering with the form can be accessed by right-clicking and

opening up various context menus.

Another very useful dock widget is the Property Editor displayed in Figure 8-4. The

properties of windows, widgets, and layouts such as an object’s name, size constraints,

status tips, and more can all be altered using the Property Editor. Each widget you add

to a form will have its own set of properties as well as ones that the widget inherits from

other classes. To select a specific widget, you can either click on the object in the form or

on the widget’s name in the Object Inspector dock widget.

The Object Inspector in Figure 8-5 allows you to view all of the objects that are

currently being used as well as their hierarchical layout. You can see how the MainWindow

is listed first, followed by the centralwidget, and all of its widgets. If your form also has

a menu or toolbar, then they will also be listed in the Object Inspector along with their

corresponding actions.

Chapter 8 Creating gUis with Qt Designer

221

Note the main layout for your gUi is not displayed in the Object Inspector.
a broken layout icon (a red circle with a slash) is displayed on the central widget or
on containers if no layout has been assigned to them.

Figure 8-3. The Widget Box dock widget for selecting layouts and widgets

Chapter 8 Creating gUis with Qt Designer

222

Figure 8-4. The Property Editor dock widget for setting the attributes of widgets

Chapter 8 Creating gUis with Qt Designer

223

Figure 8-5. The Object Inspector displays the widget, layout, and menu objects

In Qt Designer, it is also possible to create, edit, and delete signals and slots between

objects using the Signal/Slot Editor. You should be aware that although you can connect

signals and slots, you will not always be able to completely configure your widgets and

will sometimes need to complete that yourself in code. The Signal/Slot Editor can be

seen in Figure 8-6. Qt Designer also provides an editing mode for connecting widgets.

Figure 8-6. The Signal/Slot Editor for connecting the signals and slots of objects

Items in a menu, a submenu, or a toolbar are assigned commands by using actions.

These actions can then be given a shortcut key, made checkable, and more. The Action

Editor seen in Figure 8-7 gives you access to working with actions. For more information

about assigning actions, refer to Chapter 5.

Chapter 8 Creating gUis with Qt Designer

224

Figure 8-7. The Action Editor is used to manage the actions of menu items

Finally, there is the Resource Browser that allows you to specify and manage

resources you need to use in your application. These resources can include images and

icons. The Resource Browser dock widget can be seen in Figure 8-8.

Figure 8-8. The Resource Browser for working with resources such as images
and icons

If you need to add resources, you first need to create a new resource file. To do so,

click the pencil in the top-left corner of the Resource Browser dock widget. This will

open an Edit Resources dialog similar to the one in Figure 8-9.

Chapter 8 Creating gUis with Qt Designer

225

Figure 8-9. The Edit Resources dialog

Next, click on the Create New Resource button, navigate to the correct directory,

and enter a name for the resource file. The file will be saved with a .qrc file extension,

which stands for Qt Resource Collection and contains a list of all the resources used in

your program. From here, create a prefix for managing the types of resources and begin

adding files such as images and icons. When you are finished, click the OK button, and

the files will be added to the Resource Browser.

Note support for resources and .qrc files in pyQt6 is different than in pyQt5. to
access the resources, you may have to consider using other pyQt classes, such as
QFile or QDir, or use the file path to the resource.

 Qt Designer’s Editing Modes
In Qt Designer, there are four different editing modes that can be accessed either in the

Edit menu or from Qt Designer’s toolbar. Take a look at Figure 8-10 to help you locate the

widgets in the toolbar.

 1. Edit Widgets – Widgets can be dragged and dropped to a form,

layouts can be applied, and objects can be edited both on the

form and in the Property Editor. This is the default mode.

Chapter 8 Creating gUis with Qt Designer

226

 2. Edit Signals/Slots – Connect signals and slots for widgets and

layouts. To create connections, click on an object and drag the

cursor toward an object that will receive the signal. Items that can

be connected will be highlighted as the mouse cursor moves over

them. To create the connection, release the mouse button once a

line with an arrow connects the two objects. Then configure the

signals and slots. Use in conjunction with the Signal/Slot Editor

dock widget to edit connections.

 3. Edit Buddies – Connect QLabel widgets with shortcuts to input

widgets such as QLineEdit or QTextEdit. The input widget

becomes the QLabel object’s “buddy.” When the user enters the

label’s shortcut key, the focus moves to the input widget.

 4. Edit Tab Order – Set the order in which widgets receive focus when

the tab key is pressed. This allows the user to navigate through the

different widgets, improving your application’s usability.

Figure 8-10. Qt Designer’s Editing Modes (outlined in red). (From left to right)
Edit Widgets, Edit Signals/Slots, Edit Buddies, Edit Tab Order

 Creating an Application in Qt Designer
When you are creating your GUI’s windows and widgets, you will probably continue to

make slight adjustments to your application before it is finished. Fortunately, there are a

few steps you can follow to simplify the building process.

 1. Select a form – In the New Form dialog (shown in Figure 8-2),

choose from one of the available templates, Main Window,

Widget, or a type of Dialog. You can also add and preview widgets

to include in your GUI.

 2. Arrange objects on the form – Use Qt Designer’s drag-and-drop

mechanics to place widgets on the form. Then assign layouts to

containers and the main window.

Chapter 8 Creating gUis with Qt Designer

227

 3. Edit the properties of objects – Click on the objects in the form

and edit their features in the Property Editor dock widget.

 4. Connect signals and slots – Use the Signals/Slots Editing mode to

link signals to slots.

 5. Preview your GUI – Examine the form before saving it as a UI file

with the .ui extension.

 6. Create and edit Python code – Utilize the pyuic compiler to

convert the UI file to readable and editable Python code.

The following project will cover these steps in addition to many of the basic concepts

for creating GUIs using Qt Designer.

 Project 8.1 – Keypad GUI
The GUI in Figure 8-11 should be a familiar one – a keypad.

Figure 8-11. Keypad GUI

Chapter 8 Creating gUis with Qt Designer

228

Keypads are relatively simple interfaces, with sets of buttons for digits, symbols, or

letters used as input devices for passcodes or telephone numbers. They can be found on

a number of devices such as calculators, cell phones, and locks.

 Explanation for the Keypad GUI
The keypad application is composed of two Python files: keypad_gui.py and keypad_

main.py. The keypad_gui.py contains the Python class generated from the UI file built

from Qt Designer. In order to use that code, we need to create a customized class in a

separate file, keypad_main.py, to import and set up the GUI.

The keypad GUI consists of four QLineEdit widgets to input only numeric values,

12 QPushButton widgets, and a single QLabel to display information about how to use

the interface. The asterisk button allows users to clear their current input, and the hash

button is for confirming the user’s four-digit input.

We’ll begin by creating the window in Qt Designer before discussing the code.

 Selecting a Form

Begin by opening up Qt Designer. Choose the Widget template from the New Form

dialog box. We will use the Default screen size. Select Create. This opens up a blank

QWidget form with a grid of dots inside of the Qt Designer interface similar to Figure 8-1

(although that screenshot displays a QMainWindow form).

 Arranging Objects on the Form

You could begin by adjusting certain features of the form such as the window size or the

background color. Instead, let’s first add whatever widgets we need for the project by

dragging and dropping them into the main window from the Widget Box dialog on the

left of the window.

Locate the QLabel widget (called Label in the dialog) and drag one onto the form.

Then drag two QFrame containers (called Frame) onto the form like in Figure 8-12. You

can resize the frames by clicking on them and moving the edges of the frame. Then drag

four QLineEdit input widgets (called Line Edit) and arrange them in the top QFrame

Chapter 8 Creating gUis with Qt Designer

229

container. They will overlap, but that will be fixed when you apply layouts to the frames

and the main window. When an object is dragged on top of a container where it can be

placed, the container will be highlighted to indicate that you can drop the widget inside.

In addition, place 12 QPushButton widgets (called Push Button) in the bottom frame.

Figure 8-12. The form with a label and two frames (left) and with the line edit
widgets and push buttons added (right)

Before moving on, let’s take a moment to learn more about the QFrame container as it

is a very useful element in GUI development.

The QFrame Class

The QFrame class is used as a container to group and surround widgets, or to act as a

placeholder in GUI applications. You can also apply a frame style to a QFrame instance to

visually separate it from nearby widgets. The following bit of code shows an example of

how to create a frame object in a main window, modify its properties, and add a widget.

 # Create a widget to place in the frame

 button = QPushButton("Enter")

 grid = QGridLayout()

 grid.addWidget(button, 0, 0)

Chapter 8 Creating gUis with Qt Designer

230

 # Create the frame and set its parameters

 frame = QFrame() # Create a QFrame object

 size_policy = QSizePolicy(

 QSizePolicy.Policy.Expanding,

 QSizePolicy.Policy.Preferred)

 frame.setSizePolicy(size_policy)

 frame.setFrameShape(QFrame.Shape.Box)

 frame.setFrameShadow(QFrame.Shadow.Raised)

 frame.setLineWidth(3)

 frame.setMidLineWidth(5)

 # Set the layout for the QFrame object

 frame.setLayout(grid)

 self.setCentralWidget(frame)

Using the method setSizePolicy(), we can define how a frame should resize.

A frame object can have a number of different styles of frames, including Box,

Panel, StyledPanel, or NoFrame. The style of the frame can be adjusted using the

setFrameShadow(), setLineWidth(), and setMidLineWidth() methods. Different types

of shadow include Plain, Raised, and Sunken.

For practice, try creating a simple window from the previous code.

Applying Layouts in Qt Designer

The next step is to add layouts to all of the containers and to the main window. This is

an important step that ensures items are placed and resized correctly. Layouts can be

added either from the toolbar or from context menus. It is possible to add more widgets

to existing layouts once they have been set.

Since Qt Designer uses a drag-and-drop interface, you only need to place the objects

on the form close to where you want them to be and then select one of the four layouts –

QGridLayout, QHBoxLayout, QVBoxLayout, or QFormLayout – from the Widget Box dialog,

and Qt Designer will take care of arranging them. For more information about the types

of layouts in PyQt, refer to Chapter 4.

Right-click on the top-most frame to open a context menu (demonstrated in

Figure 8-13). Scroll down to the last option, Lay out, and select Lay Out Horizontally. Do

the same thing for the bottom frame, but this time select Lay Out in a Grid.

Chapter 8 Creating gUis with Qt Designer

231

Figure 8-13. Open a context menu to select layouts for containers and windows

The top-level layout of a form can be set by right-clicking on the form itself in the

main window and locating the layout you want to use. For the keypad GUI, right-click

and select Lay Out Vertically. Your GUI should look like Figure 8-14. If the widgets are

not aligned properly, you can also open the context menu, select Break Layout, and

rearrange the widgets. The option Simplify Grid Layout may also help you arrange items

in the grid layout.

Figure 8-14. The keypad GUI with layouts

Chapter 8 Creating gUis with Qt Designer

232

 Editing the Properties of Objects

Once you have the layouts prepared, you should begin editing the features of the objects.

This step could also be accomplished earlier when you place objects on the form.

The Property Editor is shown in Figure 8-4. It is organized into two columns:

Property and Value. The properties are organized by Qt Classes.

To access and make changes to specific containers, widgets, layouts, or even the

main window, you can click on them in the form or in the Object Inspector. If a property

is edited in the Property Editor, you can locate it with the following pattern:

Qt Class (Property column) ➤ Property name ➤ (submenu, if any) ➤ Value

column ➤ parameter

The following are the steps that you can follow along with to create the keypad GUI

in Qt Designer:

 1. Change window title: QWidget ➤ windowTitle ➤ 8.1 –

Keypad GUI

 2. Double-click on the QLabel. Change text to enter a passcode.

 3. Change QLabel properties:

 a. QWidget ➤ font ➤ Point Size ➤ 20

 b. To edit palette colors, you will need to locate the palette property that

opens a dialog box. Here, you can change the colors for different parts of

an object. To change the color of the text in the label object: QWidget ➤

palette ➤ Change Palette ➤ Window Text ➤ white

 c. QLabel ➤ alignment ➤ Horizontal ➤ AlignHCenter

 4. Change top frame properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Stretch ➤ 1

 b. QFrame ➤ frameShape ➤ NoFrame

 c. QFrame ➤ frameShadow ➤ Plain

 5. For each of the four QLineEdit widgets, modify their properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Policy ➤ Expanding

 b. QWidget ➤ font ➤ Point Size ➤ 30

 c. QLineEdit ➤ alignment ➤ Horizontal ➤ AlignHCenter

Chapter 8 Creating gUis with Qt Designer

233

 6. Change bottom frame properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Stretch ➤ 2

 b. QFrame ➤ frameShape ➤ Box

 c. QFrame ➤ frameShadow ➤ Sunken

 d. QFrame ➤ lineWidth ➤ 2

 7. Double-click on each of the buttons and change their text to 0–9,

*, and #. (Refer to Figure 8-11.)

 8. Edit each of the button’s properties:

 a. QWidget ➤ sizePolicy ➤ Vertical Policy ➤ Expanding

 b. QWidget ➤ font ➤ Point Size ➤ 36

 9. Resize the main window:

 a. QWidget ➤ geometry ➤ Width ➤ 302

 b. QWidget ➤ geometry ➤ Height ➤ 406

 10. Click on the form and change its background color: QWidget ➤

palette ➤ Change Palette ➤ Window ➤ dark gray

 11. In the Object Inspector, double-click on each of the default object

names for the frames, line edits, and buttons, and edit them.

Doing this will be helpful later on so that we can distinguish the

buttons when looking at the code. The object name is used to

reference the objects.

After you have followed along with each of the steps, the form should look similar to

Figure 8-11.

 Previewing Your GUI

It is often useful to view and interact with the form before exporting it to code. Not only

can this be useful for checking the visual appearance of your GUI, but previewing also

helps to make sure the signals and slots, resizing the window, and other functions are

working properly.

Chapter 8 Creating gUis with Qt Designer

234

To preview a form, open the Form menu and select Preview or use the hotkeys Ctrl+R

for Windows or Command+R for macOS. If you are satisfied with your form, save it as a

UI file with the .ui extension. Qt Designer UI files are written in XML format and contain

the widget tree representation for creating a GUI.

 Connecting Signals and Slots in Qt Designer

Switch to the Edit Signals/Slots mode by selecting it from the toolbar. Qt Designer has

a simple interface for connecting signals and slots. Click on the object that will emit a

signal and drag it to the object that will receive the signal. For the keypad GUI, we are

only making one set of connections. The remaining signals and slots will be handled by

manually coding them.

When the “*” button is clicked, we want to clear all four line edit widgets. Click on the

button and drag the red arrow to the first line edit object. A dialog box will appear (displayed

in Figure 8-15) that allows you to select the methods for both the signal and the slot.

Tip when connecting signals and slots, make sure to check the “show signals
and slots inherited from Qwidget” checkbox to access more methods.

Figure 8-15. The dialog box for connecting signals and slots

Chapter 8 Creating gUis with Qt Designer

235

Select clicked() for the button and clear() for the line edit. Finish connecting the other

three line edit widgets. Refer to Figure 8-16 as a guide for connecting the widgets. Make sure

to save your work before moving on. For this example, the file is saved as keypad.ui.

Figure 8-16. The keypad GUI with signal and slot connections

 Creating Python Code from Qt Designer

Qt Designer uses the Qt utility User Interface Compiler (uic) to generate code and

create the user interface. However, since you are using PyQt6, you must use the uic

module, pyuic6, to load .ui files and convert the XML code to Python code. The pyuic6

utility is a command line interface for interacting with uic.

Open up your system’s shell and navigate to the directory that contains the UI file.

The following line shows the format for XML to Python:

$ pyuic6 filename.ui -o filename.py

To output a Python file, you need to include the -o flag and the Python file to be

written to, filename.py. This command will generate a single Python class.

Chapter 8 Creating gUis with Qt Designer

236

With your new file created, the best practice is to create a separate script to inherit

from your newly created user interface class. Another option is to create an executable

file that can display the GUI. This can be done by including the -x flag for execute,

demonstrated for you in the following code:

pyuic6 -x filename.ui -o filename.py

Note if you make changes to the gUi in Qt Designer after creating the python
script, you will need to call pyuic6 again to update the application.

One final note about running the pyuic6 command. If you find that pyuic6 is not

found, you can try using the following format:

$ python3 -m PyQt6.uic.pyuic filename.ui -o filename.py

Change python3 to python on Windows.

Generating Code Using pyuic6

To generate the keypad_gui.py file, navigate to where you saved keypad.ui and run the

following line:

$ python3 -m PyQt6.uic.pyuic keypad.ui -o keypad_gui.py

The following Python code in Listings 8-1 to 8-10 is produced from running

the pyuic6 command. It has not been altered so that we can look over what pyuic6

produces. Do note that even if you followed along with the tutorial to make the keypad

GUI, your code may not look exactly the same.

Listing 8-1. Python class created from keypad.ui

keypad_gui.py

from PyQt6 import QtCore, QtGui, QtWidgets

class Ui_Keypad(object):

 def setupUi(self, Keypad):

 Keypad.setObjectName("Keypad")

 Keypad.resize(302, 406)

Chapter 8 Creating gUis with Qt Designer

237

PyQt6 modules are first imported. The Ui_Keypad class inherits object, denoting

that this class is the root for all other classes.

From there, the member function setupUi() of the class Ui_Keypad is used to build

a widget tree on the Keypad widget. A widget tree is used to represent the organization

of widgets in a UI. So the setupUi() method is passed a widget that will display the

interface (typically QWidget, QDialog, or QMainWindow) and compose the UI based upon

the widgets and connections we used to create it along with the parameters it inherits.

Every widget in Qt has a palette that contains information about how they will be

drawn in the window. The QPalette class contains the color groups for each widget

during one of three possible states – Active, Inactive, or Disabled.

Since we altered the palette’s background color for the main window to dark gray,

those changes will appear in Listing 8-2.

Listing 8-2. Setting up the palette for the keypad GUI

keypad_gui.py

 palette = QtGui.QPalette()

 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Active,

 QtGui.QPalette.ColorRole.Base, brush)

 brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Active,

 QtGui.QPalette.ColorRole.Window, brush)

 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Inactive,

 QtGui.QPalette.ColorRole.Base, brush)

 brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Inactive,

 QtGui.QPalette.ColorRole.Window, brush)

 brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Disabled,

 QtGui.QPalette.ColorRole.Base, brush)

Chapter 8 Creating gUis with Qt Designer

238

 brush = QtGui.QBrush(QtGui.QColor(52, 48, 47))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Disabled,

 QtGui.QPalette.ColorRole.Window, brush)

 Keypad.setPalette(palette)

You can see that even though we only changed the palette color, that change is

handled for all three states automatically. The QBrush class is used to apply the colors

and patterns to widgets. The setPalette() method applies palette to the Keypad class.

The vertical layout for the Keypad class is instantiated in Listing 8-3.

Listing 8-3. Creating the main window’s layout manager

keypad_gui.py

 self.verticalLayout = QtWidgets.QVBoxLayout(Keypad)

 self.verticalLayout.setObjectName(“verticalLayout”)

The changes made to the QLabel object are reflected in Listing 8-4. These include

modifying the label’s palette settings so that the color of the font is white and adding the

label to verticalLayout.

Listing 8-4. Creating the header label

keypad_gui.py

 self.label = QtWidgets.QLabel(Keypad)

 palette = QtGui.QPalette()

 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Active,

 QtGui.QPalette.ColorRole.WindowText, brush)

 brush = QtGui.QBrush(QtGui.QColor(255, 255, 255))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Inactive,

 QtGui.QPalette.ColorRole.WindowText, brush)

 brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))

 brush.setStyle(QtCore.Qt.BrushStyle.SolidPattern)

 palette.setBrush(QtGui.QPalette.ColorGroup.Disabled,

 QtGui.QPalette.ColorRole.WindowText, brush)

Chapter 8 Creating gUis with Qt Designer

239

 self.label.setPalette(palette)

 font = QtGui.QFont()

 font.setPointSize(20)

 self.label.setFont(font)

 self.label.setAlignment(

 QtCore.Qt.AlignmentFlag.AlignCenter)

 self.label.setObjectName("label")

 self.verticalLayout.addWidget(self.label)

The changes to label instance’s font and alignment are also reflected in the code.

The first QFrame container, frame, in Listing 8-5 holds four QLineEdit instances and

uses a QHBoxLayout to arrange the widgets.

Listing 8-5. Creating the frame for the QLineEdit widgets in the keypad GUI

keypad_gui.py

 self.frame = QtWidgets.QFrame(Keypad)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Preferred,

 QtWidgets.QSizePolicy.Policy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(1)

 sizePolicy.setHeightForWidth(

 self.frame.sizePolicy().hasHeightForWidth())

 self.frame.setSizePolicy(sizePolicy)

 self.frame.setFrameShape(

 QtWidgets.QFrame.Shape.NoFrame)

 self.frame.setFrameShadow(

 QtWidgets.QFrame.Shadow.Plain)

 self.frame.setLineWidth(0)

 self.frame.setObjectName("frame")

 self.horizontalLayout = QtWidgets.QHBoxLayout(

 self.frame)

 self.horizontalLayout.setObjectName(

 "horizontalLayout")

Chapter 8 Creating gUis with Qt Designer

240

The adjustments to frame can be seen in the previous code. The vertical stretch is

changed to 1, the frame shape is set to NoFrame, and the shadow is set to Plain. The line

edits that frame contains are constructed in Listing 8-6.

Listing 8-6. Code for the QLineEdit widgets in the keypad GUI

keypad_gui.py

 self.line_edit1 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Expanding,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.line_edit1.sizePolicy().hasHeightForWidth())

 self.line_edit1.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(30)

 self.line_edit1.setFont(font)

 self.line_edit1.setAlignment(

 QtCore.Qt.AlignmentFlag.AlignCenter)

 self.line_edit1.setObjectName("line_edit1")

 self.horizontalLayout.addWidget(self.line_edit1)

 self.line_edit2 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Expanding,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.line_edit2.sizePolicy().hasHeightForWidth())

 self.line_edit2.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(30)

 self.line_edit2.setFont(font)

 self.line_edit2.setAlignment(

 QtCore.Qt.AlignmentFlag.AlignCenter)

Chapter 8 Creating gUis with Qt Designer

241

 self.line_edit2.setObjectName("line_edit2")

 self.horizontalLayout.addWidget(self.line_edit2)

 self.line_edit3 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Expanding,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.line_edit3.sizePolicy().hasHeightForWidth())

 self.line_edit3.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(30)

 self.line_edit3.setFont(font)

 self.line_edit3.setAlignment(

 QtCore.Qt.AlignmentFlag.AlignCenter)

 self.line_edit3.setObjectName("line_edit3")

 self.horizontalLayout.addWidget(self.line_edit3)

 self.line_edit4 = QtWidgets.QLineEdit(self.frame)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Expanding,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.line_edit4.sizePolicy().hasHeightForWidth())

 self.line_edit4.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(30)

 self.line_edit4.setFont(font)

 self.line_edit4.setAlignment(

 QtCore.Qt.AlignmentFlag.AlignCenter)

 self.line_edit4.setObjectName("line_edit4")

 self.horizontalLayout.addWidget(self.line_edit4)

 self.verticalLayout.addWidget(self.frame)

Chapter 8 Creating gUis with Qt Designer

242

There is a lot of repetition in this large block of code. That is because the four line

edits all have the same changes made. By looking at one instance, you can understand

the other three.

Each of the four line edit widgets has size policies that allow them to stretch if the

window resizes in both the vertical and horizontal directions by using QSizePolicy.

Policy.Expanding. Changes made to the font size and the alignment also show up. The

QLineEdit widgets are then arranged in the horizontalLayout of the frame container.

The frame object is finally added to the verticalLayout of the main window.

The bottom frame container is instantiated in Listing 8-7, and its size policy and style

attributes are set.

Listing 8-7. Creating the frame for the QPushButton widgets in the keypad GUI

keypad_gui.py

 self.frame_2 = QtWidgets.QFrame(Keypad)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Preferred,

 QtWidgets.QSizePolicy.Policy.Preferred)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(2)

 sizePolicy.setHeightForWidth(

 self.frame_2.sizePolicy().hasHeightForWidth())

 self.frame_2.setSizePolicy(sizePolicy)

 self.frame_2.setFrameShape(QtWidgets.QFrame.Shape.Box)

 self.frame_2.setFrameShadow(

 QtWidgets.QFrame.Shadow.Sunken)

 self.frame_2.setLineWidth(2)

 self.frame_2.setObjectName("frame_2")

 self.gridLayout = QtWidgets.QGridLayout(self.frame_2)

 self.gridLayout.setObjectName("gridLayout")

The bottom frame is guaranteed to take up more vertical space since its vertical

stretch factor is set to 2. The frame has a Box shape, Sunken shadow, and lineWidth of 2.

The layout inside frame_2 holds the 12 buttons and uses a grid layout.

The names of the buttons and the line edit widgets reflect the changes we made in Qt

Designer. This makes it easier in the Python script to distinguish the widgets in the keypad

interface. Let’s take a look at the code for the 12 QPushButton widgets in Listing 8-8.

Chapter 8 Creating gUis with Qt Designer

243

Listing 8-8. Creating the QPushButton widgets that are arranged in the

bottom frame

keypad_gui.py

 self.button_7 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_7.sizePolicy().hasHeightForWidth())

 self.button_7.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_7.setFont(font)

 self.button_7.setObjectName("button_7")

 self.gridLayout.addWidget(self.button_7, 0, 0, 1, 1)

 self.button_8 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_8.sizePolicy().hasHeightForWidth())

 self.button_8.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_8.setFont(font)

 self.button_8.setObjectName("button_8")

 self.gridLayout.addWidget(self.button_8, 0, 1, 1, 1)

 self.button_9 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

Chapter 8 Creating gUis with Qt Designer

244

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_9.sizePolicy().hasHeightForWidth())

 self.button_9.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_9.setFont(font)

 self.button_9.setObjectName("button_9")

 self.gridLayout.addWidget(self.button_9, 0, 2, 1, 1)

 self.button_4 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_4.sizePolicy().hasHeightForWidth())

 self.button_4.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_4.setFont(font)

 self.button_4.setObjectName("button_4")

 self.gridLayout.addWidget(self.button_4, 1, 0, 1, 1)

 self.button_5 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_5.sizePolicy().hasHeightForWidth())

 self.button_5.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

Chapter 8 Creating gUis with Qt Designer

245

 self.button_5.setFont(font)

 self.button_5.setObjectName("button_5")

 self.gridLayout.addWidget(self.button_5, 1, 1, 1, 1)

 self.button_6 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_6.sizePolicy().hasHeightForWidth())

 self.button_6.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_6.setFont(font)

 self.button_6.setObjectName("button_6")

 self.gridLayout.addWidget(self.button_6, 1, 2, 1, 1)

 self.button_3 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_3.sizePolicy().hasHeightForWidth())

 self.button_3.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_3.setFont(font)

 self.button_3.setObjectName("button_3")

 self.gridLayout.addWidget(self.button_3, 2, 0, 1, 1)

 self.button_2 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

Chapter 8 Creating gUis with Qt Designer

246

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_2.sizePolicy().hasHeightForWidth())

 self.button_2.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_2.setFont(font)

 self.button_2.setObjectName("button_2")

 self.gridLayout.addWidget(self.button_2, 2, 1, 1, 1)

 self.button_1 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_1.sizePolicy().hasHeightForWidth())

 self.button_1.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_1.setFont(font)

 self.button_1.setObjectName("button_1")

 self.gridLayout.addWidget(self.button_1, 2, 2, 1, 1)

 self.button_star = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_star.sizePolicy().hasHeightForWidth())

 self.button_star.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

Chapter 8 Creating gUis with Qt Designer

247

 self.button_star.setFont(font)

 self.button_star.setObjectName("button_star")

 self.gridLayout.addWidget(

 self.button_star, 3, 0, 1, 1)

 self.button_0 = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_0.sizePolicy().hasHeightForWidth())

 self.button_0.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_0.setFont(font)

 self.button_0.setObjectName("button_0")

 self.gridLayout.addWidget(self.button_0, 3, 1, 1, 1)

 self.button_hash = QtWidgets.QPushButton(self.frame_2)

 sizePolicy = QtWidgets.QSizePolicy(

 QtWidgets.QSizePolicy.Policy.Minimum,

 QtWidgets.QSizePolicy.Policy.Expanding)

 sizePolicy.setHorizontalStretch(0)

 sizePolicy.setVerticalStretch(0)

 sizePolicy.setHeightForWidth(

 self.button_hash.sizePolicy().hasHeightForWidth())

 self.button_hash.setSizePolicy(sizePolicy)

 font = QtGui.QFont()

 font.setPointSize(36)

 self.button_hash.setFont(font)

 self.button_hash.setObjectName("button_hash")

 self.gridLayout.addWidget(

 self.button_hash, 3, 2, 1, 1)

 self.verticalLayout.addWidget(self.frame_2)

Chapter 8 Creating gUis with Qt Designer

248

The 12 QPushButton widgets are created. The buttons are able to expand vertically

using the Expanding flag, and their font size is set to 36. Every button is then added to the

grid layout of frame_2, which is then added to the vertical layout of the main window.

Listing 8-9 connects the signals for the button_star instance to the line edit widgets,

clearing the text whenever the button is pressed. This allows the user a way to delete

their input and try again.

Listing 8-9. Connecting the signals and slots for the keypad GUI

keypad_gui.py

 self.retranslateUi(Keypad)

 self.button_star.clicked.connect(

 self.line_edit1.clear)

 self.button_star.clicked.connect(

 self.line_edit2.clear)

 self.button_star.clicked.connect(

 self.line_edit3.clear)

 self.button_star.clicked.connect(

 self.line_edit4.clear)

 QtCore.QMetaObject.connectSlotsByName(Keypad)

The retranslateUi() method in Listing 8-10 handles how to display text in the GUI

in the case that a different language is used.

Listing 8-10. Code for the retranslateUi() method

keypad_gui.py

 def retranslateUi(self, Keypad):

 _translate = QtCore.QCoreApplication.translate

 Keypad.setWindowTitle(

 _translate("Keypad", "8.1 - Keypad GUI"))

 self.label.setText(

 _translate("Keypad", "Enter a passcode"))

 self.button_7.setText(_translate("Keypad", "7"))

 self.button_8.setText(_translate("Keypad", "8"))

 self.button_9.setText(_translate("Keypad", "9"))

 self.button_4.setText(_translate("Keypad", "4"))

 self.button_5.setText(_translate("Keypad", "5"))

Chapter 8 Creating gUis with Qt Designer

249

 self.button_6.setText(_translate("Keypad", "6"))

 self.button_3.setText(_translate("Keypad", "3"))

 self.button_2.setText(_translate("Keypad", "2"))

 self.button_1.setText(_translate("Keypad", "1"))

 self.button_star.setText(_translate("Keypad", "*"))

 self.button_0.setText(_translate("Keypad", "0"))

 self.button_hash.setText(_translate("Keypad", "#"))

QCoreApplication.translate returns the translated text of the second argument

passed to the method.

Creating a New Script to Build a GUI

The following section creates the class that inherits Ui_Keypad and sets up the GUI

application. In order to utilize the Ui_Keypad class that was created using Qt Designer,

we’ll create a new Python file, keypad_main.py. The KeypadGUI class created in keypad_

main.py will inherit from the Ui_Keypad class.

We begin by importing the modules needed for this project in Listing 8-11, including

the Ui_Keypad class and a new PyQt class, QIntValidator. PyQt provides a few classes

that can be used to verify the types of input text. QIntValidator will be used to check if

the values input into the QLineEdit widgets are integers.

Listing 8-11. Setting up the main window for the keypad GUI

keypad_main.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QMessageBox)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QIntValidator

from keypad_gui import Ui_Keypad

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.ui = Ui_Keypad()

 self.ui.setupUi(self)

Chapter 8 Creating gUis with Qt Designer

250

 self.initializeUI()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 Keypad = MainWindow()

 sys.exit(app.exec())

The MainWindow class is created using a single inheritance approach where it

inherits its properties from a single parent class, QWidget. The user interface is set up in

the __init__() method in the following lines:

 self.ui = Ui_Keypad()

 self.ui.setupUi(self)

In the initializeUI() method in Listing 8-12, local modifications are made to the

QLineEdit widgets. Here, the line edit widget’s focus policy is set to NoFocus so that users

can only enter input in the correct order, from left to right.

Listing 8-12. Code for the initializeUI() method in the keypad GUI

keypad_main.py

 def initializeUI(self):

 """Set up the application's GUI."""

 # Update other line_edit features

 # Set the max number of characters allowed

 self.ui.line_edit1.setMaxLength(1)

 # User can only enter ints from 0-9

 self.ui.line_edit1.setValidator(QIntValidator(0, 9))

 # Widget does not accept focus

 self.ui.line_edit1.setFocusPolicy(

 Qt.FocusPolicy.NoFocus)

 self.ui.line_edit2.setMaxLength(1)

 self.ui.line_edit2.setValidator(QIntValidator(0, 9))

 self.ui.line_edit2.setFocusPolicy(

 Qt.FocusPolicy.NoFocus)

Chapter 8 Creating gUis with Qt Designer

251

 self.ui.line_edit3.setMaxLength(1)

 self.ui.line_edit3.setValidator(QIntValidator(0, 9))

 self.ui.line_edit3.setFocusPolicy(

 Qt.FocusPolicy.NoFocus)

 self.ui.line_edit4.setMaxLength(1)

 self.ui.line_edit4.setValidator(QIntValidator(0, 9))

 self.ui.line_edit4.setFocusPolicy(

 Qt.FocusPolicy.NoFocus)

Then we connect the signals and slots for the button widgets in Listing 8-13. When

each button is clicked, it sends a signal that is connected to the numberClicked() slot.

Rather than creating a separate method for each button, the lambda function is used to

reuse a method for signals. lambda calls the numberClicked() function and passes it a

new parameter every time, in this case, the specific text from each button.

Listing 8-13. Setting up the signals for the push buttons in the keypad GUI

keypad_main.py

 # 4-digit passcode

 self.passcode = 8618

 # Add signal/slot connections for buttons

 self.ui.button_0.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_0.text()))

 self.ui.button_1.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_1.text()))

 self.ui.button_2.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_2.text()))

 self.ui.button_3.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_3.text()))

 self.ui.button_4.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_4.text()))

Chapter 8 Creating gUis with Qt Designer

252

 self.ui.button_5.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_5.text()))

 self.ui.button_6.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_6.text()))

 self.ui.button_7.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_7.text()))

 self.ui.button_8.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_8.text()))

 self.ui.button_9.clicked.connect(

 lambda: self.numberClicked(

 self.ui.button_9.text()))

 self.ui.button_hash.clicked.connect(

 self.checkPasscode)

When a user clicks on a button, that button’s number needs to appear in the correct

line edit widget from left to right. A widget receives focus if its text() value is empty.

This is handled in the numberClicked() slot in Listing 8-14.

Listing 8-14. Creating the numberClicked() slot

keypad_main.py

 def numberClicked(self, text_value):

 """When a button with a digit is pressed, check if

 the text for QLineEdit widgets are empty. If empty,

 set the focus to the correct widget and enter text

 value."""

 if self.ui.line_edit1.text() == "":

 self.ui.line_edit1.setFocus()

 self.ui.line_edit1.setText(text_value)

 self.ui.line_edit1.repaint()

Chapter 8 Creating gUis with Qt Designer

253

 elif (self.ui.line_edit1.text() != "") and \

 (self.ui.line_edit2.text() == ""):

 self.ui.line_edit2.setFocus()

 self.ui.line_edit2.setText(text_value)

 self.ui.line_edit2.repaint()

 elif (self.ui.line_edit1.text() != "") and \

 (self.ui.line_edit2.text() != "") and \

 (self.ui.line_edit3.text() == ""):

 self.ui.line_edit3.setFocus()

 self.ui.line_edit3.setText(text_value)

 self.ui.line_edit3.repaint()

 elif (self.ui.line_edit1.text() != "") and \

 (self.ui.line_edit2.text() != "") and \

 (self.ui.line_edit3.text() != "") and \

 (self.ui.line_edit4.text() == ""):

 self.ui.line_edit4.setFocus()

 self.ui.line_edit4.setText(text_value)

 self.ui.line_edit4.repaint()

The repaint() method is used to ensure that text is updated in the QLineEdit

widgets.

Finally, if the user presses the # button, the slot checkPasscode() in Listing 8-15

checks if the user entered a passcode that matches passcode. If the input does not

match, the line edit widgets are reset. This project could be designed so that the

password is read from a file or from a database.

Listing 8-15. Creating the checkPasscode() slot

keypad_main.py

 def checkPasscode(self):

 """Concatenate the text values from the 4 QLineEdit

 widgets, and check to see if the passcode entered by

 user matches existing passcode."""

 entered_passcode = self.ui.line_edit1.text() + \

 self.ui.line_edit2.text() + \

 self.ui.line_edit3.text() + \

 self.ui.line_edit4.text()

Chapter 8 Creating gUis with Qt Designer

254

 if len(entered_passcode) == 4 and \

 int(entered_passcode) == self.passcode:

 QMessageBox.information(

 self, "Valid Passcode!", "Valid Passcode!",

 QMessageBox.StandardButton.Ok)

 self.close()

 else:

 QMessageBox.warning(

 self, "Error Message", "Invalid Passcode.",

 QMessageBox.StandardButton.Close)

 self.ui.line_edit1.clear()

 self.ui.line_edit2.clear()

 self.ui.line_edit3.clear()

 self.ui.line_edit4.clear()

 self.ui.line_edit1.setFocus()

A QMessageBox appears to inform the user about the outcome of their password.

When you run this script, your GUI should look similar to Figure 8-11.

We have only covered some of the features of Qt Designer while building the keypad

GUI. In the following section, we’ll look at a few other important topics.

 Extra Tips for Using Qt Designer
The following section briefly covers three additional topics:

 1. Creating GUIs with menus

 2. Displaying images in Qt Designer

 3. Using style sheets

 Setting Up Main Windows and Menus
Open Qt Designer and select the Main Window template from the Form Menu in

Figure 8-2. This creates a main window with a menu bar and status bar by default. You

can see a main window form displayed in Figure 8-1.

Chapter 8 Creating gUis with Qt Designer

255

 Adding Menus and Submenus in Qt Designer

Adding menus in Qt Designer is simple. Double-click on the Type Here placeholder text

in the menu bar and enter the title of the menu. This process is shown in Figure 8-17. If

you want to create a shortcut, you can also add the ampersand, &, to the beginning of the

menu’s text. This updates the menu bar object in the Object Inspector dialog. You can

also edit the menu’s properties in the Property Editor.

Figure 8-17. Creating menus and menu entries. Type Here placeholder (top left).
Double-click the placeholder and enter the menu’s title (top right). Add a new
menu entry (bottom left). New menu entry (bottom right)

From here, you can either add more menus, submenus, or actions. To add a

submenu, first create a menu item. Then click on the plus symbol next to the new entry

in the menu. This will add a new menu that branches off of the existing menu entry.

Double-click on the Type Here placeholder and enter the text for the new item. Refer to

Figure 8-18 for help.

Chapter 8 Creating gUis with Qt Designer

256

Figure 8-18. Adding submenus. Click on the plus symbol next to the menu
entry (left). Add new entry (right)

 Adding Toolbars in Qt Designer

Toolbars can be added to the main window by right-clicking on the form to open a

context menu. Click on the Add Tool Bar option.

The actions in toolbars are created as toolbar buttons and can be dragged between

the menus and the toolbar. You can also add icons to the toolbar. This topic is covered

in Display Images in Qt Designer. An example of the toolbar with an icon is shown in

Figure 8-19.

Figure 8-19. Toolbar with Open File toolbar button

 Adding Actions in Qt Designer

When items are first created in the menu and the toolbar, they are actually actions.

Actions can be created, removed, given an icon, designated a shortcut hotkey, and made

checkable all in the Action Editor dock widget (shown in Figure 8-7). Actions can also be

shared between the menu and the toolbar.

Chapter 8 Creating gUis with Qt Designer

257

To share an action between the menu and the toolbar so that both objects contain

the same item, drag the action from the Action Editor that already exists in the menu

onto the toolbar.

 Displaying Images in Qt Designer
This section will take a quick look at how you can include images and icons in your

application. Whether you are looking to add an image to a QLabel or trying to add icons

to your toolbar, the process for adding an image is similar.

For example, if you have a QLabel widget on your form, you can access its properties

in the Property Editor. Scroll down until you find the pixmap property. Click on its Value,

and from here, you will be able to search for an image file. If you want to add an icon,

then you will use the icon property, not pixmap.

You are given two options: Choose Resource… and Choose File…. If you have added

resources to your project, then select Choose Resource…. Otherwise, you can search for

images on your computer.

Figure 8-20. Add images to your application using the pixmap property

 Adding Style Sheets in Qt Designer
Style sheets can also easily be added to each widget by right-clicking on a widget and

selecting the Change styleSheet… option from the context menu. A dialog similar to

Figure 8-21 will appear.

Chapter 8 Creating gUis with Qt Designer

258

Figure 8-21. A dialog for creating style sheets

Here, you can use the drop-down arrows to select different properties and change

colors, add resources, or change fonts.

That wraps up this chapter’s examination of Qt Designer.

 Summary
Qt Designer is definitely a useful tool for creating GUI applications. It provides a

drag- and- drop interface that makes it easier to organize widgets; modify the parameters

of objects; create menus, toolbars, and dock widgets; add actions to menus; generate

code that can be used in Python; and more. Qt Designer can make the design process

much quicker and easier.

While this chapter covered a few of the basics for using Qt Designer, there are still

other uses, such as creating your own custom widgets or building dialog boxes.

The following chapters will begin to look at more specific PyQt classes and topics

that can be used to further improve user interfaces. In the next chapter, you will discover

how to use the QClipboard class for copying and pasting data between different

applications.

Chapter 8 Creating gUis with Qt Designer

259
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_9

CHAPTER 9

Working with the
Clipboard
One of the major benefits of GUIs is the ability to create programs that can interact with

your system and other applications. This concept goes beyond opening and saving files,

or printing images.

The clipboard is a location in your computer’s memory that is used to temporarily

store data that you have copied or cut from an application. The clipboard can store a

number of different types of data, including text, images, and GIFs. Information that is

stored on your system’s clipboard can be pasted into other applications as long as the

application knows how to work with the type of data stored in the clipboard.

In this chapter, you will

• Use the QClipboard and QMimeData classes to move data between

applications

• Find out how to run multiple instances of an application at one time

To get started, let’s find out about PyQt’s class for interacting with your computer’s

clipboard.

 The QClipboard Class
The QClipboard class makes your system’s clipboard available so that you can copy and

paste data such as text, images, and rich text between applications. Qt widgets that can be

used to manipulate textual information, such as QLineEdit and QTextEdit, support using

the clipboard. Qt’s Model/View classes (which you will learn more about in Chapter 10)

also have clipboard support. If you want to paste an image from the clipboard into an

application, be sure to use widgets that support graphics, such as QLabel.

https://doi.org/10.1007/978-1-4842-7999-1_9

260

Including the clipboard in your project is pretty straightforward in PyQt. In order

to access an application’s QClipboard, first create an instance of the clipboard with the

following line:

self.clipboard = QApplication.clipboard()

The following block of code shows one way to retrieve an image that has been copied

to the clipboard and apply it to a label:

label = QLabel() # Create a label to hold an image

self.clipboard = QApplication.clipboard()

label.setPixmap(self.clipboard.pixmap())

This process only works for images, so if you want to paste text or rich text, you’ll

need to use setText() on a QLabel. Another way to get data is to use the QMimeData

class and describe what kind of data is being moved. This topic will be covered in the

“Explanation for Using QClipboard” section.

The events that occur between your system and an application built using PyQt

are handled by QApplication. The clipboard instance gives you the ability to send or

receive data in your application. However, the clipboard can only hold one object at a

time. So if you copy an image to the clipboard and then copy text, only the text will be

available, and the image will have been deleted.

In this section, you will create a simple GUI, like in Figure 9-1, that shows how to

collect text from other applications and then paste it in a PyQt window.

Chapter 9 Working With the Clipboard

261

Figure 9-1. The user can see the contents of the clipboard in the top dock widget

The top text edit widget displays the current contents of the clipboard. The user

can then paste it into the main window, which is the lower text edit widget. In some

applications, you may actually want to see the contents of the clipboard in a separate

window before pasting it into the main window. A dock widget, especially one that can

float separate from the main window, is perfect to use as a clipboard manager.

 Explanation for Using QClipboard
In this section, you will see how to set up the clipboard and actually be able to visualize

its contents after copying text from another window.

As this project’s MainWindow class inherits QMainWindow, you can use the main_

window_template.py script from Chapter 5 to get started in Listing 9-1.

Chapter 9 Working With the Clipboard

262

Listing 9-1. Setting up the main window for using the clipboard

clipboard_ex.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QPushButton, QTextEdit, QDockWidget, QFrame, QVBoxLayout)

from PyQt6.QtCore import Qt

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 300)

 self.setWindowTitle("Clipboard Example")

 self.setUpMainWindow()

 self.createClipboardDock()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The upper QTextEdit in Figure 9-1 is placed in a QDockWidget. This is set up in the

createClipboardDock() method.

After importing classes and setting up the window in the previous code, let’s set the

central widget of the main window as a QTextEdit widget in Listing 9-2. The central

widget is where the user can edit the text that is pasted from the clipboard.

Listing 9-2. The setUpMainWindow() method for using the clipboard

clipboard_ex.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

Chapter 9 Working With the Clipboard

263

 self.central_tedit = QTextEdit()

 self.setCentralWidget(self.central_tedit)

Next, we’ll set up the dock widget in Listing 9-3 that is composed of a QTextEdit and

a QPushButton arranged in a QVBoxLayout. A QFrame container holds the clipboard_

tedit and paste_button widgets.

Listing 9-3. Code for the createClipboardDock() method

clipboard_ex.py

 def createClipboardDock(self):

 """Set up the clipboard and dock widget to display

 text from the system's clipboard."""

 self.clipboard_tedit = QTextEdit()

 paste_button = QPushButton("Paste")

 paste_button.clicked.connect(self.pasteText)

 dock_v_box = QVBoxLayout()

 dock_v_box.addWidget(self.clipboard_tedit)

 dock_v_box.addWidget(paste_button)

 # Set the main layout for the dock widget,

 # then set the main widget of the dock widget

 dock_frame = QFrame()

 dock_frame.setLayout(dock_v_box)

 # Create a dock widget

 clipboard_dock = QDockWidget()

 clipboard_dock.setWindowTitle(

 "Display Clipboard Contents")

 clipboard_dock.setAllowedAreas(

 Qt.DockWidgetArea.TopDockWidgetArea)

 clipboard_dock.setWidget(dock_frame)

 # Set initial location of dock widget

 self.addDockWidget(

 Qt.DockWidgetArea.TopDockWidgetArea,

 clipboard_dock)

Chapter 9 Working With the Clipboard

264

 # Create instance of the clipboard

 self.clipboard = QApplication.clipboard()

 self.clipboard.dataChanged.connect(

 self.copyFromClipboard)

The clipboard_dock widget is set so that it can either float or be attached to the top

of the main window. If new text is copied from another application, then clipboard_

tedit will display the text. If the user wants to retain the text, then they can press paste_

button and copy it into central_tedit.

The QClipboard method dataChanged() emits a signal if the contents of the

clipboard have changed. If a change has occurred, then the clipboard_tedit widget is

updated to display the new clipboard text using the copyFromClipboard() method in

Listing 9-4.

Listing 9-4. Code for the copyFromClipboard() and pasteText() slots

clipboard_ex.py

 def copyFromClipboard(self):

 """Get the contents of the system clipboard and

 paste to the window that has focus."""

 mime_data = self.clipboard.mimeData()

 if mime_data.hasText():

 self.clipboard_tedit.setText(mime_data.text())

 self.clipboard_tedit.repaint()

 def pasteText(self):

 """Paste text from clipboard if button is clicked."""

 self.central_tedit.paste()

 self.central_tedit.repaint()

To check what kind of data is stored in the clipboard, we use the QMimeData class that

is used for both the clipboard and the drag-and-drop system in PyQt. The Multipurpose
Internet Mail Extensions (MIME) format supports not only text but also HTML,

URLs, images, and color data. Objects created from the QMimeData class ensure that

information can be safely moved between applications and also between objects in the

same application.

Chapter 9 Working With the Clipboard

265

The method mimeData() returns information about the data currently in the

clipboard. To check if the object can return plain text, we use the hasText() method.

If the data is text, then we get the text using mime_data.text() and set the text of the

QTextEdit widget using setText(). A similar process is also used to access other kinds

of data using QMimeData.

Finally, the QTextEdit method paste() is called in pasteText() to fetch the text in

the clipboard if the button is pressed. The repaint() method is used to force the text of

the widget to update.

 Project 9.1 – Sticky Notes GUI
Sometimes, you have an idea, a note, or a bit of information that you need to quickly jot

down. Maybe you need to remind yourself of an appointment and need to write a note to

yourself. You only need a small, temporary, maybe even colorful, area to help brainstorm

and organize those ideas. Sticky notes are perfect for those uses and more.

The sticky notes GUI, shown in Figure 9-2, allows you to open as many windows

as you want. You can edit the text of each note individually, change the color of a note,

and also paste text from the clipboard. This project demonstrates a practical use for the

clipboard class and acts as a foundation if you choose to build your own sticky notes

application.

Chapter 9 Working With the Clipboard

266

Figure 9-2. The sticky notes GUI

The sticky notes GUI is a good project to introduce the concept of Single Document
Interface (SDI). SDI is a method that organizes GUIs into individual windows

that are handled separately. Even though the sticky note application allows you to

create multiple instances of the GUI at the same time, each window is separate and

independent from the others. The contrast is Multiple Document Interface (MDI),

where a single parent window contains and controls multiple nested child windows. An

example of MDI can be found in Chapter 12.

Chapter 9 Working With the Clipboard

267

 Explanation for the Sticky Notes GUI
The sticky note window is relatively simple, consisting of a single QTextEdit widget that

serves as the central widget. The menu bar allows you to create a new note, clear the text

in the QTextEdit widget, quit the application, change the background color, and paste

text from the clipboard.

Beginning with the main_window_template.py script from Chapter 5, we’ll import

the classes that we need in Listing 9-5. Since this window contains a menu bar, be sure to

import QAction to create actions for the menu.

For this program, the MainWindow class is changed to StickyNote. You don’t have to

change this, but doing so is just a subtle indication that each instance of StickyNote is its

own window.

Listing 9-5. Setting up the main window for the sticky notes GUI

sticky_notes.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QTextEdit)

from PyQt6.QtGui import QAction

class StickyNote(QMainWindow):

 # Class variables shared by all instances

 note_id = 1

 notes = []

 def __init__(self, note_ref=str()):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(250, 250)

 self.setWindowTitle("9.1 - Sticky Notes GUI")

 self.setUpMainWindow()

 self.createActions()

Chapter 9 Working With the Clipboard

268

 self.createMenu()

 self.createClipboard)

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = StickyNote()

 sys.exit(app.exec())

The StickyNote class includes two class variables: note_id, used to give a unique

name and reference to each new window, and notes, to keep track of the new windows

that are opened by appending them to a list. The class variables are shared by all

instances of the class and managed by QApplication.

A QTextEdit widget is set as the central widget in Listing 9-6. In addition, when a

new note is created, the instance is appended to the notes list.

Listing 9-6. Code for the SetUpMainWindow() method for the sticky notes GUI

sticky_notes.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window.”""

 self.notes.append(self)

 self.central_tedit = QTextEdit()

 self.setCentralWidget(self.central_tedit)

Listing 9-7 builds the actions for a StickyNote instance. The menu bar includes

actions for creating a new instance of StickyNote, changing background colors, and

pasting text. You can refer to Chapter 5 for help setting up menu bars and actions.

Listing 9-7. Code for the createActions() method for the sticky notes GUI

sticky_notes.py

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.new_note_act = QAction("New Note", self)

 self.new_note_act.setShortcut("Ctrl+N")

 self.new_note_act.triggered.connect(self.newNote)

Chapter 9 Working With the Clipboard

269

 self.close_act = QAction("Clear", self)

 self.close_act.setShortcut("Ctrl+W")

 self.close_act.triggered.connect(self.clearNote)

 self.quit_act = QAction("Quit", self)

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

 # Create actions for Color menu

 self.yellow_act = QAction("Yellow", self)

 self.yellow_act.triggered.connect(

 lambda: self.changeBackground(

 self.yellow_act.text()))

 self.blue_act = QAction("Blue", self)

 self.blue_act.triggered.connect(

 lambda: self.changeBackground(

 self.blue_act.text()))

 self.green_act = QAction("Green", self)

 self.green_act.triggered.connect(

 lambda: self.changeBackground(

 self.green_act.text()))

 # Create actions for Paste menu

 self.paste_act = QAction("Paste", self)

 self.paste_act.setShortcut("Ctrl+V")

 self.paste_act.triggered.connect(

 self.pasteToClipboard)

Depending upon your system, you may see warnings appear in your shell talking

about mismatched keys. These are due to the different rules for virtual key codes set

by each platform. Other warnings can also arise due to hard-coded key bindings for Qt

input widget classes. If you see an error, don’t worry at the moment. For this example,

the actions will still perform as designated by the specified shortcut keys.

Listing 9-8 creates the File, Color, and Paste menus and their options.

Chapter 9 Working With the Clipboard

270

Listing 9-8. Code for the createMenu() method for the sticky notes GUI

sticky_notes.py

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create File menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.new_note_act)

 file_menu.addAction(self.close_act)

 file_menu.addAction(self.quit_act)

 # Create Color menu and add actions

 color_menu = self.menuBar().addMenu("Color")

 color_menu.addAction(self.yellow_act)

 color_menu.addAction(self.blue_act)

 color_menu.addAction(self.green_act)

 # Create Paste menu and add actions

 paste_menu = self.menuBar().addMenu("Paste")

 paste_menu.addAction(self.paste_act)

The Color menu allows the user to select a background color for each note. If the

user wants to paste text from the clipboard into a widget, they can either use the Paste

menu option or the hotkey, Ctrl+V.

The createClipboard() method creates the clipboard object, and the

copyToClipboard() slot in Listing 9-9 is triggered when data is changed in the clipboard

by the dataChanged signal.

Listing 9-9. Code for setting up the clipboard in the sticky notes GUI

sticky_notes.py

 def createClipboard(self):

 """Set up the clipboard."""

 self.clipboard = QApplication.clipboard()

 self.clipboard.dataChanged.connect(

 self.copyToClipboard)

 self.mime_data = self.clipboard.mimeData()

Chapter 9 Working With the Clipboard

271

 def copyToClipboard(self):

 """Get the contents of the system clipboard."""

 self.mime_data = self.clipboard.mimeData()

 def newNote(self):

 """Create new instance of StickyNote class."""

 StickyNote().show()

 self.note_id += 1

The variable mime_data holds the current data copied to the clipboard and is

updated when the data is changed. A new note instance is created in newNote(). Using

show(), that new StickyNote instance appears on screen. Each new note is given a

reference number, note_id, when it is created. A challenge for you would be to find

a PyQt method that allows you to specify the 2D location where the new window

will appear.

The other slots in Listing 9-10 allow you to clear with the text, change the

background color of central_tedit, or check if mime_data has text and, if so, paste it

into central_tedit.

Listing 9-10. Additional slots for the menu items in the sticky notes GUI

sticky_notes.py

 def clearNote(self):

 """Delete the current note's text."""

 self.central_tedit.clear()

 def changeBackground(self, color_text):

 """Change a note's background color."""

 if color_text == "Yellow":

 self.central_tedit.setStyleSheet(

 "background-color: rgb(248, 253, 145)")

 elif color_text == "Blue":

 self.central_tedit.setStyleSheet(

 "background-color: rgb(145, 253, 251)")

 elif color_text == "Green":

 self.central_tedit.setStyleSheet(

 "background-color: rgb(148, 253, 145)")

Chapter 9 Working With the Clipboard

272

 def pasteToClipboard(self):

 """Get the contents of the system clipboard and

 paste into the note."""

 if self.mime_data.hasText():

 self.central_tedit.paste()

The sticky note GUI shows one practical use case when copying data between

applications can be helpful.

 Summary
The QClipboard class allows GUI applications to receive and send data from the system’s

clipboard. The QMimeData class handles various kinds of data types for both clipboard

and drag-and-drop systems, ensuring proper data handling.

Many of PyQt’s widgets for editing text already include the ability to interact with

the clipboard, so you won’t often need to include the code for the clipboard in your

program.

In the next chapter, you will learn about Qt’s classes for handling data. You will also

learn how to apply drag-and-drop functionality in your GUIs so that data can be passed

between widgets and other programs.

Chapter 9 Working With the Clipboard

273
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_10

CHAPTER 10

Presenting Data in PyQt
As a GUI developer, you’ll probably find yourself at some point looking for a way to

present data, whether textual or visual, in your interface. Before embarking on that

adventure, you’ll need to keep in mind the user and the purpose of your application. In

many cases, the methods for presenting graphical data already follow various standard

practices. Many users will have a preexisting notion of how data in tables should be

displayed or how items in a list should be added to deleted. Thankfully, Qt has already

considered this and created a few classes that make the task of presenting data quicker

and simpler.

In this chapter, you will

• Begin thinking about how to handle data in PyQt

• Create a GUI for each of the item-based convenience classes –

QListWidget, QTableWidget, and QTreeWidget

• Add drag-and-drop functionality to a GUI

• Create context menus for displaying shortcuts

Let’s start by finding out what the convenience classes can do.

 Quickly Handling Data in PyQt
The study and collection of data is a great undertaking, especially since information has

the potential of improving people’s lives, informing decisions, finding solutions, and

more. The process of organizing and visualizing data is simplified even more thanks

to Qt’s Model/View design pattern. This topic is covered in more detail in Chapter 14,

but what is important to understand here is that the model and view work together to

organize, manage, and present data in a GUI. Models are used for managing the data,

while views are used for displaying the data in the GUI.

https://doi.org/10.1007/978-1-4842-7999-1_10

274

For this chapter, we’ll focus on the convenience classes that are derived from the

Model/View classes. While this means you’ll get less customizability and flexibility,

the convenience classes still provide the general functionalities you will need right out

of the box. This can be especially helpful when customization is not required for your

application.

The three convenience classes use predefined models and views with all of the

standard styles, features, and functionalities that you would expect to find in a general

item-based interface.

Information about Model/View programming can be found at https://doc.qt.io/

qt- 6/model- view- programming.html.

 The QListWidget Class
The QListWidget class creates a widget that displays a single column of items, making

it simpler for adding and removing items. Items can be added either when the widget is

created in code or inserted later through the GUI.

Items in all three of the convenience classes are created using special classes. The

QListWidgetItem class is used in conjunction with QListWidget to serve as an item

that can be used with the list. Figure 10-1 shows the GUI we are going to make for this

example.

Figure 10-1. QListWidget can be used to display objects in an inventory or items
in a directory

Chapter 10 presenting Data in pyQt

https://doc.qt.io/qt-6/model-view-programming.html
https://doc.qt.io/qt-6/model-view-programming.html

275

The QListWidget class includes various methods for creating and manipulating data

in the list, including

• addItem(QListWidgetItem) – Adds an item to the end of a list

• currentRow() – Returns the index value of the currently selected row

• insertItem(row, QListWidgetItem) – Inserts an item at the

specified row

• takeItem(row) – Removes an item from the specified row

• clear() – Removes and deletes all items from the list

 Explanation for Using QListWidget
The following example briefly demonstrates how to add, insert, remove, and clear all

items from a QListWidget. To begin, use the basic_window.py script from Chapter 1

to create a new script and set up the MainWindow class and initializeUI() method in

Listing 10-1.

Listing 10-1. Setting up the MainWindow class for the QListWidget example

list_widget.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QPushButton, QListWidget, QListWidgetItem, QInputDialog,

 QHBoxLayout, QVBoxLayout,)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(400, 200)

 self.setWindowTitle("QListWidget Example")

Chapter 10 presenting Data in pyQt

276

 self.setUpMainWindow()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Be sure to include the QListWidget and QListWidgetItem imports from QtWidgets.

QInputDialog will be used when adding or inserting a new row into the QListWidget.

The setUpMainWindow() method for the MainWindow class is built in Listing 10-2.

QListWidget is used to manage the data items displayed in the GUI window. For

alternating row colors, set the setAlternatingRowColors() method’s value to True.

Listing 10-2. Creating the setUpMainWindow() method for the

QListWidget example

list_widget.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.list_widget = QListWidget()

 self.list_widget.setAlternatingRowColors(True)

 # Initialize the QListWidget with items

 grocery_list = ["grapes", "broccoli", "garlic",

 "cheese", "bacon", "eggs", "waffles",

 "rice", "soda"]

 for item in grocery_list:

 list_item = QListWidgetItem()

 list_item.setText(item)

 self.list_widget.addItem(list_item)

 # Create buttons for interacting with the items

 add_button = QPushButton("Add")

 add_button.clicked.connect(self.addListItem)

 insert_button = QPushButton("Insert")

 insert_button.clicked.connect(self.insertItemInList)

Chapter 10 presenting Data in pyQt

277

 remove_button = QPushButton("Remove")

 remove_button.clicked.connect(self.removeOneItem)

 clear_button = QPushButton("Clear")

 clear_button.clicked.connect(self.list_widget.clear)

 # Create layouts

 right_v_box = QVBoxLayout()

 right_v_box.addWidget(add_button)

 right_v_box.addWidget(insert_button)

 right_v_box.addWidget(remove_button)

 right_v_box.addWidget(clear_button)

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.list_widget)

 main_h_box.addLayout(right_v_box)

 self.setLayout(main_h_box)

To display the string items from grocery_list in list_widget, we’ll need to create

a QListWidgetItem object for each item, set its text using setText(), and use the

addItem() method to add the item to list_widget. These items will populate the list

when the program begins. Here, we are merely passing text to QListWidgetItem, but you

can also pass an icon as well.

From there, let’s create the buttons for each of the actions that can be performed

on the QListWidget and connect those buttons to a clicked signal. Whenever a button

is clicked, it will emit a signal that connects to a slot for editing the data items in the

QListWidget.

The buttons are added to a QVBoxLayout, which are then arranged along with

list_widget in the main window’s QHBoxLayout.

Listing 10-3 takes care of creating the slot that is triggered by add_button.

Listing 10-3. Code for the addListItem() slot

list_widget.py

 def addListItem(self):

 """Add a single item to the list widget."""

 text, ok = QInputDialog.getText(

 self, "New Item", "Add item:")

Chapter 10 presenting Data in pyQt

278

 if ok and text != "":

 list_item = QListWidgetItem()

 list_item.setText(text)

 self.list_widget.addItem(list_item)

When the user wants to add a new item, a QInputDialog instance like the one seen

in Figure 10-2 will appear.

Figure 10-2. Adding a new item to QListWidget using QInputDialog

If text has been entered and the user clicks the OK button in the dialog, then a new

item is appended to the end of list_widget using addItem().

Using the buttons on the right of the main window, the user can also insert, remove,

or clear the list items. We’ll need to create two additional slots, insertItemInList()

and removeOneItem(), in Listing 10-4. For clear_button, the clicked signal is simply

connected to the QListWidget method clear().

Listing 10-4. The remaining slots for the MainWindow class in the

QListWidget example

list_widget.py

 def insertItemInList(self):

 """Insert a single item into the list widget under

 the currently selected row. """

 text, ok = QInputDialog.getText(

 self, "Insert Item", "Insert item:")

 if ok and text != "":

 row = self.list_widget.currentRow()

 row = row + 1 # Select row below current row

Chapter 10 presenting Data in pyQt

279

 new_item = QListWidgetItem()

 new_item.setText(text)

 self.list_widget.insertItem(row, new_item)

 def removeOneItem(self):

 """Remove a single item from the list widget."""

 row = self.list_widget.currentRow()

 item = self.list_widget.takeItem(row)

 del item

A QInputDialog will appear when the user wants to insert a new data item. If the

user clicks OK, the currently selected row is determined using currentRow(). Next, the

value for row is increased by 1, a new QListWidgetItem is created, and that new item is

inserted below the currently selected row. When removing a row, currentRow() is used

again to discover which row is selected. The method takeItem() is used to remove the

item from the QListWidget. The del keyword is used to permanently delete an item

since takeItem() does not actually delete items.

In the following section, you’ll continue to use QListWidget to find out how to

extend the capabilities of the widget with drag-and-drop functionality.

 Drag and Drop in PyQt
The drag-and-drop mechanism allows a user to perform tasks in a GUI by selecting

items, such as icons or images, and moving them into another window or onto another

object. PyQt also makes including this behavior in an application very straightforward.

To allow widgets to have basic drag-and-drop functionality, you only need to set the

values of setAcceptDrops() and setDragEnabled() methods to True.

With drag-and-drop functionality enabled, you can move items from one text edit,

list, or table object to another in PyQt. QMimeData can also be used to handle what kind

of data can be moved, dragged, or dropped.

Figure 10-3 displays the GUI you’ll be creating in this section. Items in the window

can be dragged and dropped back and forth between the two QListWidget instances. Be

sure to download the images folder from the GitHub repository for this project.

Chapter 10 presenting Data in pyQt

280

Figure 10-3. Two QListWidget objects used to demonstrate drag and drop

Tip Drag-and-drop mechanics can be applied to a variety of different widgets,
not just QListWidget. you should have a look at pyQt or Qt documentation to find
out which widgets already have built-in drag-and-drop capabilities.

 Explanation for Drag and Drop
Start with the basic_window.py script and modify the MainWindow class in Listing 10-5.

We’ll continue using the QListWidget and QListWidgetItem classes in this example to

demonstrate drag and drop.

Listing 10-5. Creating the MainWindow class for the drag and drop example

drag_drop.py

Import necessary modules

import sys, os

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QListWidget, QListWidgetItem, QGridLayout)

Chapter 10 presenting Data in pyQt

281

from PyQt6.QtCore import QSize

from PyQt6.QtGui import QIcon

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 300)

 self.setWindowTitle("Drag and Drop Example")

 self.setUpMainWindow()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

There are two instances of the QListWidget class created, icon_widget and list_

widget, in Listing 10-6. Items in QListWidget can be viewed either as icons or as text

in a list. The icon_widget object displays icons by using the flag IconMode. The default

setting is to show items in a list.

Listing 10-6. Code for the setUpMainWindow() method in the drag and

drop example

drag_drop.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 icon_label = QLabel("ICONS", self)

 icon_widget = QListWidget()

 icon_widget.setAcceptDrops(True)

 icon_widget.setDragEnabled(True)

 icon_widget.setViewMode(

 QListWidget.ViewMode.IconMode)

Chapter 10 presenting Data in pyQt

282

 image_path = "images"

 for img in os.listdir(image_path):

 list_item = QListWidgetItem()

 list_item.setText(img.split(".")[0])

 list_item.setIcon(QIcon(os.path.join(image_path,

 "{0}").format(img)))

 icon_widget.setIconSize(QSize(50, 50))

 icon_widget.addItem(list_item)

 list_label = QLabel("LIST", self)

 list_widget = QListWidget()

 list_widget.setAlternatingRowColors(True)

 list_widget.setAcceptDrops(True)

 list_widget.setDragEnabled(True)

 # create grid layout

 grid = QGridLayout()

 grid.addWidget(icon_label, 0, 0)

 grid.addWidget(list_label, 0, 1)

 grid.addWidget(icon_widget, 1, 0)

 grid.addWidget(list_widget, 1, 1)

 self.setLayout(grid)

To set up the drag-and-drop ability for icon_widget, set the values for

setAcceptDrops() and setDragEnabled() to True. The setAcceptDrops() method

allows for drop events to be accepted on the widget, while setDragEnabled() allows for

items to be dragged in and out of the widget. These methods are actually inherited from

QWidget, so most classes that inherit QWidget will also have access to drag-and-drop

functionalities.

When the program begins, only the QListWidget icon_widget will be populated

with items from the images folder. Although the methods setText() and setIcon() are

called to apply the text and icons to the QListWidgetItem instances, these values can

also be passed as arguments when instantiating a QListWidgetItem object.

Chapter 10 presenting Data in pyQt

283

Next, repeat the process for list_widget, but don’t change the widget’s view mode.

When one of the icons that are loaded into icon_widget is dragged onto list_widget,

the list updates its contents to include the new item. Dropping an item from one

QListWidget to the other adds a new item to that list.

The next section will take a look at the convenience class for creating tables in PyQt.

 The QTableWidget Class
The QTableWidget class provides a means to display and organize data in tabular form,

presenting the information in rows and columns. Using tables arranges data into a more

readable format. An example of PyQt’s tables can be seen in Figure 10-4.

Figure 10-4. Example of a table from the QTableWidget class

QTableWidget provides you with the standard tools that you will need to create

tables, including the ability to edit cells, set the number of rows and columns, and add

vertical or horizontal header labels. You can also hide headers should you not want them

to be visible. QTableWidget also has a number of signals for checking if cells or items

have been clicked, double-clicked, or even altered.

For this first example, we will be taking a look at how to use QTableWidget to create

the foundation for an application to edit spreadsheets. In addition, this application will

teach you how to build a context menu to manipulate the contents of the table widget.

Chapter 10 presenting Data in pyQt

284

 Explanation for Using QTableWidget
For this application, start by building the MainWindow class in Listing 10-7 by using the

main_window_template.py script from Chapter 5. Make sure to import QTableWidget

and QTableWidgetItem, which is used to create items for the table widget. The QMenu

class will be used to create context menus in the GUI.

Listing 10-7. Setting up the MainWindow class for the QTableWidget example

table_widget.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QTableWidget, QTableWidgetItem, QMenu, QInputDialog)

from PyQt6.QtGui import QAction

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(1000, 500)

 self.setWindowTitle(

 "Spreadsheet - QTableWidget Example")

 # Used for copy and paste actions

 self.item_text = None

 self.setUpMainWindow()

 self.createActions()

 self.createMenu()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Chapter 10 presenting Data in pyQt

285

Be sure to create the instance variable, item_text, that will hold the text for copy

and paste actions. The QTableWidget that creates the GUI’s spreadsheet is created in

Listing 10-8 in setUpMainWindow().

Listing 10-8. Creating the setUpMainWindow() method for the

QTableWidget example

table_widget.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.table_widget = QTableWidget()

 # Set initial row and column values

 self.table_widget.setRowCount(10)

 self.table_widget.setColumnCount(10)

 # Set focus on cell in the table

 self.table_widget.setCurrentCell(0, 0)

 # When the horizontal headers are double-clicked,

 # emit a signal

 h_header = self.table_widget.horizontalHeader()

 h_header.sectionDoubleClicked.connect(

 self.changeHeader)

 self.setCentralWidget(self.table_widget)

When instantiating a QTableWidget object, you could pass the number of rows and

columns as parameters to the QTableWidget, like in the following line:

 table_widget = QTableWidget(10, 10)

Or you could construct a table using the setRowCount() and setColumnCount()

methods. The table_widget instance will start with ten rows and ten columns.

The setCurrentCell() method can be used to place focus on a specific cell in

the table.

The QTableWidget and QTreeWidget classes have headers; QListWidget does

not. To access a table’s headers, you can either call the horizontalHeader() for

horizontal headers or verticalHeader() for vertical ones. Changing header labels

Chapter 10 presenting Data in pyQt

286

in QTableWidget can either be done directly in code or by using a slightly indirect

approach. Headers for tables are created using QHeaderView in the QTableView class.

We’ll cover QTableView and other view classes more in Chapter 14.

Since QTableWidget inherits from the QTableView class, we also have access to its

functions. Knowing that, we are able to obtain the QHeaderView object using table_

widget.horizontalHeader(). From there, we can connect to the QHeaderView class's

signal, sectionDoubleClicked. This signal can be used to check if the user double-

clicked a header section. If they did, a signal triggers the changeHeader() slot (created in

Listing 10-12).

The menu bar seen in Figure 10-4 contains two menus: File and Table. File contains

the action for quitting the application. Table includes actions for adding and deleting

rows or columns. We’ll set up those actions in Listing 10-9.

Listing 10-9. Code for the createActions() method in the QTableWidget example

table_widget.py

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.quit_act = QAction("Quit", self)

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

 # Create actions for Table menu

 self.add_row_above_act = QAction(

 "Add Row Above", self)

 self.add_row_above_act.triggered.connect(

 self.addRowAbove)

 self.add_row_below_act = QAction(

 "Add Row Below", self)

 self.add_row_below_act.triggered.connect(

 self.addRowBelow)

 self.add_col_before_act = QAction(

 "Add Column Before", self)

 self.add_col_before_act.triggered.connect(

 self.addColumnBefore)

Chapter 10 presenting Data in pyQt

287

 self.add_col_after_act = QAction(

 "Add Column After", self)

 self.add_col_after_act.triggered.connect(

 self.addColumnAfter)

 self.delete_row_act = QAction("Delete Row", self)

 self.delete_row_act.triggered.connect(self.deleteRow)

 self.delete_col_act = QAction("Delete Column", self)

 self.delete_col_act.triggered.connect(

 self.deleteColumn)

 self.clear_table_act = QAction("Clear All", self)

 self.clear_table_act.triggered.connect(

 self.clearTable)

The slots that each action is connected to are created in Listing 10-14. The menu

items are created in Listing 10-10. Refer to Chapter 5 for more reference on creating

actions and menus.

Listing 10-10. Code for the createMenu() method in the QTableWidget example

table_widget.py

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create file menu and add actions

 file_menu = self.menuBar().addMenu('File')

 file_menu.addAction(self.quit_act)

 # Create table menu and add actions

 table_menu = self.menuBar().addMenu('Table')

 table_menu.addAction(self.add_row_above_act)

 table_menu.addAction(self.add_row_below_act)

 table_menu.addSeparator()

 table_menu.addAction(self.add_col_before_act)

 table_menu.addAction(self.add_col_after_act)

 table_menu.addSeparator()

Chapter 10 presenting Data in pyQt

288

 table_menu.addAction(self.delete_row_act)

 table_menu.addAction(self.delete_col_act)

 table_menu.addSeparator()

 table_menu.addAction(self.clear_table_act)

The context menu and its actions are generated in the next section.

 Creating Context Menus

This application also introduces how to create a context menu, sometimes called a

pop- up menu, that appears in the window due to a user’s interaction, such as when

the right mouse button is clicked. A context menu displays a list of general commands,

such as Back Page or Reload Page. Context menus can also be set for managing specific

widgets.

Since context menus are caused by events, we can reimplement the event handler,

contextMenuEvent(). A simple example is shown in the following block of code:

 def contextMenuEvent(self, event):

 context_menu = QMenu(self)

 context_menu.addAction(self.add_row_above_act)

A context menu is typically created using QMenu. You can either use existing actions

that are created in the menu bar or the toolbar, or you can create new ones. An example

of this application’s context menu is shown in Figure 10-5.

Chapter 10 presenting Data in pyQt

289

Figure 10-5. Example of a context menu that displays actions for editing the
table widget

For the context menu in Figure 10-5, all of the menu’s actions in Listing 10-9 (except

for quit_act) are included. Two additional actions are also created specifically for the

context menu: copy_act and paste_act. Those are handled in Listing 10-11.

Listing 10-11. Code for the event handler contextMenuEvent() in the

QTableWidget example

table_widget.py

 def contextMenuEvent(self, event):

 """Create context menu and additional actions."""

 context_menu = QMenu(self)

 context_menu.addAction(self.add_row_above_act)

 context_menu.addAction(self.add_row_below_act)

 context_menu.addSeparator()

 context_menu.addAction(self.add_col_before_act)

 context_menu.addAction(self.add_col_after_act)

 context_menu.addSeparator()

Chapter 10 presenting Data in pyQt

290

 context_menu.addAction(self.delete_row_act)

 context_menu.addAction(self.delete_col_act)

 context_menu.addSeparator()

 # Create actions specific to the context menu

 copy_act = context_menu.addAction("Copy")

 paste_act = context_menu.addAction("Paste")

 context_menu.addSeparator()

 context_menu.addAction(self.clear_table_act)

 # Execute the context_menu and return the action

 # selected. mapToGlobal() translates the position

 # of the window coordinates to the global screen

 # coordinates. This way we can detect if a right-click

 # occurred inside of the GUI and display the context

 # menu

 action = context_menu.exec(

 self.mapToGlobal(event.pos()))

 # Check for actions selected in the context menu that

 # were not created in the menu bar

 if action == copy_act:

 self.copyItem()

 if action == paste_act:

 self.pasteItem()

The context menu is displayed using exec(). The value that it returns, action, can

be used to determine if the additional actions were clicked on in the context menu. We

pass self.mapToGlobal() as an argument to get the coordinates of the mouse within the

screen. The position of the mouse is determined with event.pos().

If action is equal to copy_act, we’ll call the method copyItem(). For paste_act, the

pasteItem() method is called. These are created in Listing 10-13.

 Using Built-in QTableWidget Methods to Edit Data

The remaining listings will create the different slots and methods in MainWindow. For

Listing 10-12, we’ll create changeHeader() that is triggered when a column header is

double-clicked.

Chapter 10 presenting Data in pyQt

291

To get the text for the selected column header, QInputDialog is displayed to get the

header label text from the user. Finally, the item for the horizontal header is set using

setHorizontalHeaderItem().

Listing 10-12. Code for the changeHeader() slot in the QTableWidget example

table_widget.py

 def changeHeader(self):

 """Change horizontal headers by returning the text

 from input dialog."""

 col = self.table_widget.currentColumn()

 text, ok = QInputDialog.getText(

 self, "Enter Header", "Header text:")

 if ok and text != "":

 self.table_widget.setHorizontalHeaderItem(

 col, QTableWidgetItem(text))

Setting horizontal header labels can be accomplished with either

setHorizontalHeaderItem() or setHorizontalHeaderLabels(). You can change

Horizontal to Vertical in the method calls for vertical headers.

We’ll handle the extra methods in the context menu next in Listing 10-13. If the

selected cell is not empty, we copy the text to item_text. In the pasteItem() method,

the current row and column of the selected cell are collected. We then paste the data

using setItem(). The copy and paste actions could also be implemented using the

QClipboard.

Listing 10-13. Code for the copyItem() and pasteItem() methods used by the

context menu

table_widget.py

 def copyItem(self):

 """If the current cell selected is not empty,

 store the text."""

 if self.table_widget.currentItem() != None:

 text = self.table_widget.currentItem().text()

 self.item_text = text

Chapter 10 presenting Data in pyQt

292

 def pasteItem(self):

 """Set item for selected cell."""

 if self.item_text != None:

 row = self.table_widget.currentRow()

 column = self.table_widget.currentColumn()

 self.table_widget.setItem(

 row, column, QTableWidgetItem(self.item_text))

You can also add items to the table programmatically using the setItem() method.

This allows you to specify the row and column values, and an item for the cell using

QTableWidgetItem. In the following code, the item Kalani is inserted in row 0 and

column 0.

 self.table_widget.setItem(

 1, 0, QTableWidgetItem("Kalani"))

QTableWidget includes a few methods for manipulating table objects. The Table

menu creates actions that put those methods to use. These actions call slots that utilize

built-in QTableWidget methods. The following list describes how these methods are

used in the GUI and in Listing 10-14:

• Adding rows above or below the currently selected row using

insertRow()

• Adding columns before or after the currently selected column using

insertColumn()

• Deleting the current row or column using removeRow() or

removeColumn()

• Clearing the entire table, including items and headers with clear()

Listing 10-14. Code for the slots that modify data in the QTableWidget example

table_widget.py

 def addRowAbove(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.insertRow(current_row)

Chapter 10 presenting Data in pyQt

293

 def addRowBelow(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.insertRow(current_row + 1)

 def addColumnBefore(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.insertColumn(current_col)

 def addColumnAfter(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.insertColumn(current_col + 1)

 def deleteRow(self):

 current_row = self.table_widget.currentRow()

 self.table_widget.removeRow(current_row)

 def deleteColumn(self):

 current_col = self.table_widget.currentColumn()

 self.table_widget.removeColumn(current_col)

 def clearTable(self):

 self.table_widget.clear()

Items in a table are accessed using their row and column values. We’ll first need to

know which row or column is currently selected. For example, when add_row_above_act

is clicked, it triggers a signal that calls addRowAbove(). We first find out the row that is

selected using currentRow(). A new row is then inserted in the current row’s location,

causing all other rows to move down. Methods that manipulate columns use the

currentColumn() method.

The last program will introduce the QTreeWidget convenience class.

 The QTreeWidget Class
The QTreeWidget class shares similarities with both QListWidget and QTableWidget. On

the one hand, data items can be displayed in a list-like format similar to QListWidget.

On the other hand, QTreeWidget can also display multiple columns of data, but not in a

tabular format.

Chapter 10 presenting Data in pyQt

294

What sets QTreeWidget apart is how the class can visually represent the relationships

between data in a tree-like structure. It is possible for an item in the tree to be the parent

of other items.

The GUI that we will build in this section is shown in Figure 10-6.

Figure 10-6. A QTreeWidget is used to present data in a tree-like structure

Items added to QTreeWidget are created from QTreeWidgetItem. For the items in

Figure 10-6, there will be two parent items for the types of fruit and a number of child

items with icons that are organized under the parents.

Similar to QTableWidget, QTreeWidget also contains horizontal headers for each

column. However, there are no vertical headers.

Sorting of column items is also possible with QTreeWidget.

Be sure to download the icons folder from GitHub before beginning this application.

 Explanation for Using QTreeWidget
We’ll begin with basic_window.py script from Chapter 1, update the imports, and set the

window’s minimum size and title for the MainWindow class in Listing 10-15.

Listing 10-15. Setting up the MainWindow class for the QTreeWidget example

tree_widget.py

Import necessary modules

import sys

Chapter 10 presenting Data in pyQt

295

from PyQt6.QtWidgets import (QApplication, QWidget,

 QTreeWidget, QTreeWidgetItem, QVBoxLayout)

from PyQt6.QtGui import QIcon

class MainWindow(QWidget):

 def __init__(self):

 """ Constructor for Empty Window Class """

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 300)

 self.setWindowTitle("QTreeWidget Example")

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

After creating the QTreeWidget object in Listing 10-16, we’ll need to set the number

of columns with the setColumnCount() setter. Next, we’ll specify the labels for each of

the columns. The method setHeaderLabels() takes an iterable object as an argument.

The method setColumnWidth() is used to set the minimum column width of a specified

column, ensuring that all of the items are clearly displayed. Here, column 0 is set to a

width of 160 pixels.

Listing 10-16. Creating the setUpMainWindow() method for the QTreeWidget

example, part 1

tree_widget.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 tree_widget = QTreeWidget()

 tree_widget.setColumnCount(2)

Chapter 10 presenting Data in pyQt

296

 tree_widget.setHeaderLabels(

 ["Fruit Type", "Description"])

 tree_widget.setColumnWidth(0, 160)

 category_1 = QTreeWidgetItem(tree_widget, ["Apples", \

 "Edible fruit produced by an apple tree"])

 apple_list = [

 ["Braeburn", "Yellow with red stripes or blush", \

 "icons/braeburn.png"],

 ["Empire", "Solid red", "icons/empire.png"],

 ["Ginger Gold", "Green-yellow", \

 "icons/ginger_gold.png"]]

 for i in range(len(apple_list)):

 category_1_child = QTreeWidgetItem(

 apple_list[i][:2])

 category_1_child.setIcon(

 0, QIcon(apple_list[i][2]))

 category_1.addChild(category_1_child)

The category_1 instance is a QTreeWidgetItem for the first parent item in the tree.

The parent widget, tree_widget, as well as a list of the information for the two columns

is passed to the item. Following that, apple_list is a list of lists. Each list contains an

apple type corresponding to the first column, a description to be displayed in the second

column, and an icon that is displayed next to the item’s name. Each category_1_child

is then turned into a QTreeWidgetItem, and its icon is set and at last added to the

category_1 parent item in a Python for loop.

The same process is followed to create the second parent item and its children in

Listing 10-17.

Listing 10-17. Creating the setUpMainWindow() method for the QTreeWidget

example, part 2

tree_widget.py

 category_2 = QTreeWidgetItem(tree_widget,

 ["Oranges", "A type of citrus fruit"])

Chapter 10 presenting Data in pyQt

297

 orange_list = [

 ["Navel", "Sweet and slightly bitter", \

 "icons/navel.png"],

 ["Blood Orange", "Juicy and tart", \

 "icons/blood_orange.png"],

 ["Clementine", "Usually seedless", \

 "icons/clementine.png"]]

 for i in range(len(apple_list)):

 category_2_child = QTreeWidgetItem(

 orange_list[i][:2])

 category_2_child.setIcon(

 0, QIcon(orange_list[i][2]))

 category_2.addChild(category_2_child)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(tree_widget)

 self.setLayout(main_v_box)

With the items created, tree_widget is added to the layout of the main window.

With this GUI complete, you have now experienced creating applications for each of

the Model/View convenience classes.

 Summary
In this chapter, we took a look at the item-based convenience classes that follow

standard methods for presenting data. Items are typically presented in a list, in a table,

or in a tree. We learned about QListWidget, QTableWidget, and QTreeWidget and

discovered how to use some of their features to create unique and practical GUIs. All

of the item-based widget classes as well as many other classes that inherit QWidget

have drag-and-drop capabilities. This system is very useful since it makes moving data

between graphical elements in a GUI even simpler.

In the next chapter, we’ll explore the graphical aspects of GUIs and begin to see how

we can add animation and color to applications.

Chapter 10 presenting Data in pyQt

299
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_11

CHAPTER 11

Graphics and Animation
in PyQt
As you design GUIs, you will find out that you can also explore your creative and artistic

side through drawing and animating widgets. Since graphics are such an immense

part of graphical applications, this chapter is only able to introduce topics related to

2D graphics, including lines, shapes, animations, and painting. If you are interested in

creating GUIs that work with 3D visuals, Qt also has support for various graphics APIs,

including OpenGL and Vulkan.1 If you are really interested in graphics in Qt 6, have a

look at https://doc.qt.io/qt- 6/topics- graphics.html.

In this chapter, you will

• Learn about QPainter and other classes used for drawing in Qt

• Create tool tips using QToolTip

• Use QPropertyAnimation to animate widgets

• Animate objects using QPropertyAnimation and pyqtProperty

• Find out how to use QGraphicsView to construct a graphics scene

To begin, let’s start with one of the most important classes in PyQt.

1 For information about OpenGL, check out www.opengl.org. For Vulkan, check out www.
vulkan.org.

https://doi.org/10.1007/978-1-4842-7999-1_11
https://doc.qt.io/qt-6/topics-graphics.html
http://www.opengl.org
http://www.vulkan.org
http://www.vulkan.org

300

 Introduction to the QPainter Class
Graphics in Qt are created primarily with the QPainter API. Qt’s painting system handles

drawing for text, images, and vector graphics and can be done on a variety of surfaces,

such as QImage, QWidget, and QPrinter. With QPainter, you can enhance the look of

existing widgets or even create your own.

The main components of the painting system in PyQt are the QPainter,

QPaintDevice, and QPaintEngine classes. QPainter performs the drawing operations;

a QPaintDevice is an abstraction of two-dimensional space that acts as the surface that

QPainter can paint on; QPaintEngine is the internal interface used by the QPainter and

QPaintDevice classes for drawing.

Whenever you need to draw something in PyQt, you will more than likely need to

work with the QPainter class. QPainter provides functions for drawing simple points

and lines, complex shapes, text, and pixmaps. We have looked at pixmaps in previous

chapters in applications where we needed to display images. QPainter also allows you

to customize a variety of its settings, such as rendering quality or changing the painter’s

coordinate system. Drawing can be done on a paint device, which is a two-dimensional

object created from the different PyQt classes. These objects can be painted on with

QPainter.

Drawing relies on a coordinate system for specifying the position of points and

shapes and is typically handled in the paint event of a widget. The default coordinate

system for a paint device has the origin at the top-left corner, beginning at (0, 0). The x

values increase to the right, and the y values increase going down. Each (x, y) coordinate

defines the location of a single pixel.

The GUI created in Figure 11-1 illustrates a few of the QPainter class’s drawing

functions and tools.

Chapter 11 GraphiCs and animation in pyQt

301

Figure 11-1. Some of the QPainter class’s different painting functions. The GUI
includes points, lines, and text in the first row; the second row illustrates shapes
and patterns, including rectangles, polygons, and rectangles with rounded corners;
the last row displays curves, circles, and painting with gradients

 Explanation for Using the QPainter Class
We’ll get started by using the basic_window.py script from Chapter 1. This program

introduces quite a few new classes, a majority of them imported from the QtGui module.

QtGui provides us with the tools we need for 2D graphics, imaging, and fonts. The QPoint

and QRect classes imported from QtCore in Listing 11-1 are used to define points and

rectangles specified by coordinate values in the window’s plane.

Chapter 11 GraphiCs and animation in pyQt

302

Listing 11-1. Creating the MainWindow class for the QPainter example

paint_basics.py

Import necessary modules

import sys

from PyQt6.QtWidgets import QApplication, QWidget

from PyQt6.QtCore import Qt, QPoint, QRect

from PyQt6.QtGui import (QPainter, QPainterPath, QColor,

 QBrush, QPen, QFont, QPolygon, QLinearGradient)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(600, 600)

 self.setWindowTitle("QPainter Basics")

 # Create a few pen colors

 self.black = '#000000'

 self.blue = '#2041F1'

 self.green = '#12A708'

 self.purple = '#6512F0'

 self.red = '#E00C0C'

 self.orange = '#FF930A'

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The MainWindow class inherits from QWidget, and all drawing will occur on the

widget’s surface. It definitely helps to think of widgets as canvases that you will draw and

paint patterns and colors on. While the Qt Namespace has the Qt.GlobalColor enum

with some standard colors, we’ll create a few colors of our own in initializeUI().

Chapter 11 GraphiCs and animation in pyQt

303

You’ll probably also notice that there is no setUpMainWindow() method or any other

method calls for drawing. That is because the event handler paintEvent() will take care

of all of the drawing in the window.

 The paintEvent() Event Handler

For general purposes, painting is handled inside the paintEvent() function. Let’s look at

an example of how to set up QPainter in the following code to draw a simple line:

 def paintEvent(self, event):

 painter = QPainter() # Construct the painter object

 painter.begin(self)

 painter.drawLine(260, 20, 260, 180)

 painter.end()

Drawing occurs between the begin() and end() methods on the paint device,

referenced by self. The drawing is handled in between these two methods. Using

begin() and end() is not required. You could construct a painter that takes as a

parameter the paint device. However, begin() and end() can be used to catch any errors

should the painter fail.

Listing 11-2 creates the paintEvent() event handler for MainWindow.

Listing 11-2. Code for the paintEvent() event handler in the QPainter example

paint_basics.py

 def paintEvent(self, event):

 """Reimplement event handler to create a QPainter

 object that is used throughout the example."""

 painter = QPainter()

 painter.begin(self)

 # Use antialiasing to smooth curved edges

 painter.setRenderHint(

 QPainter.RenderHint.Antialiasing)

 self.drawPoints(painter)

 self.drawDiffLines(painter)

 self.drawText(painter)

 self.drawRectangles(painter)

Chapter 11 GraphiCs and animation in pyQt

304

 self.drawPolygons(painter)

 self.drawRoundedRects(painter)

 self.drawCurves(painter)

 self.drawCircles(painter)

 self.drawGradients(painter)

 painter.end()

Other methods can also be called during the paint event. Since only one painter

is allowed at a time, we call different methods that all take the painter object as an

argument in Listing 11-2.

One of the settings that we can change in QPainter is the rendering quality

using render hints. QPainter.RenderHint.Antialiasing creates smoother-looking

curved edges.

 The QColor, QPen, and QBrush Classes

Some of the settings that can be modified include the color, width, and styles used to

draw lines and shapes. The QColor class provides access to different color schemes,

for example, RGB, HSV, and CMYK values. Colors can be specified by using either RGB

hexadecimal strings, "#112233"; predefined color names, such as Qt.GlobalColor.blue

or Qt.GlobalColor.darkBlue; or RGB values, (233, 12, 43). QColor also includes an

alpha channel used for giving colors transparency, where 0 is completely transparent

and 255 is completely opaque.

QPen is used for drawing lines and the outlines of shapes. The following line creates a

black pen with a width of 2 pixels that draws dashed lines:

 pen = QPen(QColor("#000000"), 2, Qt.PenStyle.DashLine)

 painter.setPen(pen)

The default style is Qt.PenStyle.SolidLine.

QBrush defines how to paint, or rather fill in, shapes. Brushes can have a color, a

pattern, a gradient, or a texture. A magenta brush with the Dense5Pattern style is created

in the following block:

 brush = QBrush(Qt.darkMagenta,

 Qt.BrushStyle.Dense5Pattern)

 painter.setBrush(brush)

Chapter 11 GraphiCs and animation in pyQt

305

The default style is Qt.BrushStyle.SolidPattern.

If you wish to create multiple lines or shapes with different pens and brushes, make

sure to call setPen() and/or setBrush() each time they need to be changed. Otherwise,

QPainter will continue to use the pen and brush settings from the previous call.

These concepts are all demonstrated in the following sections.

Note Calling QPainter.begin() will reset all the painter settings to
default values.

 Drawing Points and Lines

Let’s take a look at how to draw points and lines on a widget in Listing 11-3.

Listing 11-3. Code for the drawPoints() and drawDiffLines() methods

paint_basics.py

 def drawPoints(self, painter):

 """Example of how to draw points with QPainter."""

 pen = QPen(QColor(self.black))

 for i in range(1, 9):

 pen.setWidth(i * 2)

 painter.setPen(pen)

 painter.drawPoint(i * 20, i * 20)

 def drawDiffLines(self, painter):

 """Examples of how to draw lines with QPainter."""

 pen = QPen(QColor(self.black), 2)

 painter.setPen(pen)

 painter.drawLine(230, 20, 230, 180)

 pen.setStyle(Qt.PenStyle.DashLine)

 painter.setPen(pen)

 painter.drawLine(260, 20, 260, 180)

Chapter 11 GraphiCs and animation in pyQt

306

 pen.setStyle(Qt.PenStyle.DotLine)

 painter.setPen(pen)

 painter.drawLine(290, 20, 290, 180)

 pen.setStyle(Qt.PenStyle.DashDotLine)

 painter.setPen(pen)

 painter.drawLine(320, 20, 320, 180)

 # Change the color and thickness of the pen

 blue_pen = QPen(QColor(self.blue), 4)

 painter.setPen(blue_pen)

 painter.drawLine(350, 20, 350, 180)

 blue_pen.setStyle(Qt.PenStyle.DashDotDotLine)

 painter.setPen(blue_pen)

 painter.drawLine(380, 20, 380, 180)

The drawPoint() method can be used to draw single pixels. By changing the width of

the pen, you can draw wider points. The x and y values can either be explicitly defined or

specified with QPoint. A simpler example for drawing a single point of width 3 pixels at

point (10, 15) is shown in the following code:

 pen.setWidth(3)

 painter.setPen(pen)

 painter.drawPoint(10, 15)

Note the drawPoint() method and other methods are specified using integer
values. some of the drawing methods allow you to also use floating-point values.
rather than importing the QPoint and QRect classes, you would use QPointF
and QRectF.

The results of drawPoints() and drawDiffLines() are shown in Figure 11-2.

Chapter 11 GraphiCs and animation in pyQt

307

Figure 11-2. Example of points and lines drawn using QPainter

For drawing lines, there are the drawLine() and drawLines() methods. Each of

the lines shown in Figure 11-2 displays different styles or colors. Lines are created by

specifying a set of points, namely, the starting x1 and y1 values and the ending x2 and y2

values. This is demonstrated in the following code:

 pen.setStyle(Qt.DashLine) # Specify a style

 painter.setPen(pen) # Set the pen

 painter.drawLine(260, 20, 260, 180) # x1, y1, x2, y2

 Drawing Text

The drawText() method in Listing 11-4 is used to draw text on the paint device, and we

can make use of setFont() to apply different font settings.

Listing 11-4. Code for the drawText() method

paint_basics.py

 def drawText(self, painter):

 """Example of how to draw text with QPainter."""

 text = "Don't look behind you."

 pen = QPen(QColor(self.red))

 painter.setFont(QFont("Helvetica", 15))

 painter.setPen(pen)

 painter.drawText(420, 110, text)

Chapter 11 GraphiCs and animation in pyQt

308

The text is drawn by first specifying the top-left coordinates on the paint device

(think of text as being placed inside of a rectangle). This is the simplest way to draw text.

For multiple lines or for wrapping text, use a QRect object (a rectangle) to contain the

text. The results of drawing text are shown in Figure 11-3.

Figure 11-3. A simple example of drawing text with QPainter

 Drawing Two-Dimensional Shapes

There are a few different ways to draw quadrilaterals using the drawRect() method. For

this example, we will specify the top-left corner’s coordinates followed by the width and

height of the shape.

 painter.drawRect(120, 220, 80, 80)

For each of the squares shown in the top-left corner of Figure 11-4, we begin by

setting the pen and brush values before calling drawRect() to draw the shape. The first

shape has a black pen with no brush; the second calls setBrush() to fill in the square.

The next shape uses a red pen with a green brush. Finally, the last square shows an

example of how to set the transparency of the pen object’s color to 100.

Chapter 11 GraphiCs and animation in pyQt

309

Figure 11-4. Different shapes drawn with QPainter

These rectangles are drawn using the drawRectangles() method in Listing 11-5.

Listing 11-5. Code for the drawRectangles() method

paint_basics.py

 def drawRectangles(self, painter):

 """Examples of how to draw rectangles with

 QPainter."""

 pen = QPen(QColor(self.black))

 brush = QBrush(QColor(self.black))

 painter.setPen(pen)

 painter.drawRect(20, 220, 80, 80)

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawRect(120, 220, 80, 80)

 red_pen = QPen(QColor(self.red), 5)

 green_brush = QBrush(QColor(self.green))

Chapter 11 GraphiCs and animation in pyQt

310

 painter.setPen(red_pen)

 painter.setBrush(green_brush)

 painter.drawRect(20, 320, 80, 80)

 # Demonstrate how to change the alpha channel

 # to include transparency

 blue_pen = QPen(QColor(32, 85, 230, 100), 5)

 blue_pen.setStyle(Qt.PenStyle.DashLine)

 painter.setPen(blue_pen)

 painter.setBrush(green_brush)

 painter.drawRect(120, 320, 80, 80)

To draw irregular polygons, the QPolygon class can be used by specifying the point

coordinates of each corner. This is handled in Listing 11-6. The order that the points are

passed to the QPolygon object is the order in which they are drawn. The polygon object is

then drawn using the QPainter method drawPolygon(). The polygon can be seen in the

middle of the top row in Figure 11-4.

Listing 11-6. Code for the drawPolygons() method

paint_basics.py

 def drawPolygons(self, painter):

 """Example of how to draw polygons with QPainter."""

 pen = QPen(QColor(self.blue), 2)

 brush = QBrush(QColor(self.orange))

 points = QPolygon([QPoint(240, 240), QPoint(380, 250),

 QPoint(230, 380), QPoint(370, 360)])

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawPolygon(points)

QPainter can also draw rectangles with rounded corners. The process for drawing

them is similar to drawing normal rectangles, except we need to specify the x and y

radius values for the corners. Examples can be seen in Figure 11-4 in the top-right

corner. Listing 11-7 shows how to create a rounded rectangle by first creating the QRect

object’s coordinates, followed by specifying a brush style to fill in the shape.

Chapter 11 GraphiCs and animation in pyQt

311

Listing 11-7. Code for the drawRoundedRects() method

paint_basics.py

 def drawRoundedRects(self, painter):

 """Examples of how to draw rectangles with

 rounded corners with QPainter."""

 pen = QPen(QColor(self.black))

 brush = QBrush(QColor(self.black))

 rect_1 = QRect(420, 340, 40, 60)

 rect_2 = QRect(480, 300, 50, 40)

 rect_3 = QRect(540, 240, 40, 60)

 painter.setPen(pen)

 brush.setStyle(Qt.BrushStyle.Dense1Pattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_1, 8, 8)

 brush.setStyle(Qt.BrushStyle.Dense5Pattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_2, 5, 20)

 brush.setStyle(Qt.BrushStyle.BDiagPattern)

 painter.setBrush(brush)

 painter.drawRoundedRect(rect_3, 15, 15)

For drawing abstract shapes, we need to use QPainterPath. Objects composed of

different components, such as lines, rectangles, and curves, are called painter paths. An

example of a painter path can be seen in the bottom-left corner of Figure 11-4.

In the drawCurves() method in Listing 11-8, we first create a black pen and a white

brush and an instance of QPainterPath. The moveTo() method moves to a position in

the window without drawing any other components. We’ll start drawing at this position,

(30, 420).

Listing 11-8. Code for the drawCurves() method

paint_basics.py

 def drawCurves(self, painter):

 """Examples of how to draw curves with

Chapter 11 GraphiCs and animation in pyQt

312

 QPainterPath."""

 pen = QPen(Qt.GlobalColor.black, 3)

 brush = QBrush(Qt.GlobalColor.white)

 tail_path = QPainterPath()

 tail_path.moveTo(30, 420)

 tail_path.cubicTo(30, 420, 65, 500, 30, 560)

 tail_path.lineTo(163, 540)

 tail_path.cubicTo(125, 360, 110, 440, 30, 420)

 tail_path.closeSubpath()

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawPath(tail_path)

The cubicTo() method can be used to draw a parametric curve, also called a Bézier

curve, from the starting position, (30, 420), to the ending position, (30, 560). The first

two points, (30, 420) and (65, 500), in cubicTo() are used to influence how the line

curves between the starting and ending points. The next components of tail_path are a

line drawn with lineTo() and another curve drawn with cubicTo(). The abstract shape

is closed with closeSubpath(), and the path is drawn using drawPath().

The last shape we are going to look at is the ellipse that is drawn using the QPainter

method drawEllipse(). For an ellipse, we need four values, the location of the center,

and two radii values for the x and y directions. If the radii values are equal, we can draw a

circle like in the bottom right corner of Figure 11-4.

Listing 11-9 shows how to draw an ellipse with a QPoint as the center coordinate,

followed by the x and y radius values. The shape could also be drawn by passing a QRect

to the QPoint constructor.

Listing 11-9. Code for the drawCircles() method

paint_basics.py

 def drawCircles(self, painter):

 """Example of how to draw ellipses with QPainter."""

 height, width = self.height(), self.width()

 center_x, center_y = (width / 2), height - 100

 radius_x, radius_y = 60, 60

Chapter 11 GraphiCs and animation in pyQt

313

 pen = QPen(Qt.GlobalColor.black, 2,

 Qt.PenStyle.SolidLine)

 brush = QBrush(Qt.GlobalColor.darkMagenta,

 Qt.BrushStyle.Dense5Pattern)

 painter.setPen(pen)

 painter.setBrush(brush)

 painter.drawEllipse(QPoint(int(center_x),

 int(center_y)), radius_x, radius_y)

 Drawing Gradients

Gradients can be used along with QBrush to fill the inside of shapes. There are three

different types of gradient styles in PyQt: linear, radial, and conical. For this example,

we will use the QLinearGradient class to interpolate colors between two start and end

points. The result can be seen in Figure 11-5.

Figure 11-5. Applying a gradient to a square

The QLinearGradient constructor takes as arguments the area of the paint device

where the gradient will occur, specified by the x1, y1, x2, y2 coordinates. An example of

this is shown in Listing 11-10.

Listing 11-10. Code for the drawGradients() method

paint_basics.py

 def drawGradients(self, painter):

 """Example of how to fill shapes using gradients."""

Chapter 11 GraphiCs and animation in pyQt

314

 pen = QPen(QColor(self.black), 2)

 gradient = QLinearGradient(450, 480, 520, 550)

 gradient.setColorAt(0.0, Qt.GlobalColor.blue)

 gradient.setColorAt(0.5, Qt.GlobalColor.yellow)

 gradient.setColorAt(1.0, Qt.GlobalColor.cyan)

 painter.setPen(pen)

 painter.setBrush(QBrush(gradient))

 painter.drawRect(420, 420, 160, 160)

We can create points to start painting and blending colors using setColorAt(). This

method defines the position where a color starts and what color is used to fill in that

area. The position values must be from 0.0 to 1.0.

The following project combines what we have just learned about drawing in PyQt

and combines it with what we know about widgets and windows to build a painting

application.

 Project 11.1 – Painter GUI
There are many digital art applications out there filled to the brim with tools for drawing,

painting, editing, and creating your own art on the computer. With QPainter, you could

manually code each individual line and shape one by one. However, rather than going

through that painstaking process to create digital works of art, the painter GUI project

lays the foundation for creating a drawing application that could pave the way for a

smoother drawing process. The interface can be seen in Figure 11-6.

Chapter 11 GraphiCs and animation in pyQt

315

Figure 11-6. The painter GUI with toolbar on the left side of the window and the
mouse’s current coordinates displayed in the status bar

For this first project, we will be looking to combine many of the concepts that

you learned in previous chapters, including menu bars, toolbars, status bars, dialog

boxes, creating icons, and reimplementing event handlers, and combine them with the

QPainter class. On top of it all, we will be sprinkling on a few new ideas, focusing on how

to create tool tips and track the mouse’s position.

Be sure to get the icons folder from GitHub for this project.

 Explanation for the Painter GUI
For the painter GUI, users will be able to draw using either a pencil or a marker tool,

erase, and select colors using QColorDialog. The items in the menu allow users to clear

the current canvas, save their drawing, quit, and turn on or off antialiasing.

Chapter 11 GraphiCs and animation in pyQt

316

To get started, in Listing 11-11, let’s use the main_window_template.py script from

Chapter 5. We’ll import a variety of classes from QtWidgets, QtCore, and QtGui. Be sure

to include the QToolTip class so that we can create informative tool tips for items in the

toolbar.

Listing 11-11. Importing PyQt classes for the painter GUI

painter.py

Import necessary modules

import os, sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QLabel, QToolBar, QStatusBar, QToolTip, QColorDialog,

 QFileDialog)

from PyQt6.QtCore import Qt, QSize, QPoint, QRect

from PyQt6.QtGui import (QPainter, QPixmap, QPen, QColor,

 QIcon, QFont, QAction)

The painter GUI allows users to draw images on the canvas area. Unlike in the

previous example where painting occurred on the main widget, this example shows

how to subclass QLabel and reimplement its painting and mouse event handlers. The

handling for some of the event handlers in this application was adapted from the Qt

document website.2

The program contains two classes: the Canvas class for drawing and the MainWindow

class for creating the menu bar and toolbar.

 Creating the Canvas Class
Most classes in PyQt can be subclassed in order to modify or expand existing

functionalities. The word most is used because not all classes are intended to be

subclassed, for example, convenience classes like QListWidget and QTableWidget. For

this project, subclassing QLabel and reimplementing its paintEvent() event handler

allow us to create a surface for drawing.

In Listing 11-12, the Canvas class inherits QLabel, meaning we can create a custom

QLabel class. We’ll also pass the class’s parent so we have access to its status bar.

A different approach could involve using pyqtSignal to update the status bar.

2 Link: https://doc.qt.io/qt-6/qtwidgets-widgets-scribble-example.html

Chapter 11 GraphiCs and animation in pyQt

https://doc.qt.io/qt-6/qtwidgets-widgets-scribble-example.html

317

Listing 11-12. Code for the custom Canvas class

painter.py

Creates widget to be drawn on

class Canvas(QLabel):

 def __init__(self, parent):

 super().__init__()

 self.parent = parent

 width, height = parent.width(), parent.height()

 # Create a pixmap object that will act as the canvas

 self.pixmap = QPixmap(width, height)

 self.pixmap.fill(Qt.GlobalColor.white)

 self.setPixmap(self.pixmap)

 # Keep track of the mouse for getting mouse

 # coordinates

 self.mouse_track_label = QLabel()

 self.setMouseTracking(True)

 # Initialize variables

 self.antialiasing_status = False

 self.eraser_selected = False

 self.last_mouse_pos = QPoint()

 self.drawing = False

 self.pen_color = Qt.GlobalColor.black

 self.pen_width = 2

Next, we’ll create a pixmap object and pass it to setPixmap(). Since QPixmap can be

used as a QPaintDevice, using a pixmap makes handling the drawing and displaying of

pixels much simpler. Also, using QPixmap means that we can set an initial background

color using fill().

Next, we need to initialize a few variables and objects.

• mouse_track_label – A label for displaying the mouse’s current

position

• eraser_selected – True if the eraser is selected

Chapter 11 GraphiCs and animation in pyQt

318

• antialiasing_status – True if the user has checked the menu item

for using antialiasing

• last_mouse_pos – Keeps track of the mouse’s last position when the

left mouse button is pressed or when the mouse moves

• drawing – True if the left mouse button is pressed, indicating the user

might be drawing

• pen_color, pen_width – Variables that hold the initial values of the

pen and brush

Since the user will use the mouse to draw in the GUI window, we need to handle the

events when the mouse button is pressed or released and when the mouse is moved.

We can use setMouseTracking() to keep track of the mouse cursor and return its

coordinates in mouseMoveEvent(). The returned coordinates will be displayed in the

status bar.

Listing 11-13 creates the selectDrawingTool() slot that determines which drawing

tool has been selected in the toolbar. The user has four choices in the toolbar, including

a pencil, a marker, an eraser, and a color selector. In addition, the slot also takes care of

settling the value of eraser_selected and setting the pen width or color.

Listing 11-13. Code for the selectDrawingTool() slot in the custom Canvas class

painter.py

 def selectDrawingTool(self, tool):

 """Determine which tool in the toolbar has been

 selected."""

 if tool == "pencil":

 self.eraser_selected = False

 self.pen_width = 2

 elif tool == "marker":

 self.eraser_selected = False

 self.pen_width = 8

 elif tool == "eraser":

 self.eraser_selected = True

 elif tool == "color":

 self.eraser_selected = False

 color = QColorDialog.getColor()

Chapter 11 GraphiCs and animation in pyQt

319

 if color.isValid():

 self.pen_color = color

For Listing 11-14, if the user presses the left mouse button while the cursor is in the

window, we set drawing equal to True and store the current value of the mouse in last_

mouse_pos. We’ll also need to check when the mouse has been released to stop drawing

and update the values for drawing and eraser_selected.

Listing 11-14. Reimplementing mousePressEvent() and mouseReleaseEvent() in

the Canvas class

painter.py

 def mousePressEvent(self, event):

 """Handle when the mouse is pressed."""

 if event.button() == Qt.MouseButton.LeftButton:

 self.last_mouse_pos = event.pos()

 self.drawing = True

 def mouseReleaseEvent(self, event):

 """Handle when the mouse is released.

 Check when the eraser is no longer being used."""

 if event.button() == Qt.MouseButton.LeftButton:

 self.drawing = False

 elif self.eraser_selected == True:

 self.eraser_selected = False

 Handling Mouse Movement Events

This project displays the mouse’s current x and y coordinates in the status bar. You may

not want this kind of functionality, so the following code shows the basics for turning

mouse tracking on and setting up mouseMoveEvent() to return the x and y values:

 # Turn mouse tracking on

 self.setMouseTracking(True)

 def mouseMoveEvent(self, event):

 mouse_pos = event.pos()

Chapter 11 GraphiCs and animation in pyQt

320

 pos_text = "Mouse Coordinates: (

 {}, {})".format(mouse_pos.x(), mouse_pos.y())

 print(pos_text)

Mouse move events occur whenever the mouse is moved or when a mouse button is

pressed or released.

For mouseMoveEvent() used by the Canvas class in Listing 11-15, we’ll call

drawOnCanvas() if only the mouse’s left button has been clicked. We’ll pass the mouse_

pos coordinates to mouse_track_label and display them in the status bar.

Listing 11-15. Reimplementing mousePressEvent() and mouseReleaseEvent() in

the Canvas class

painter.py

 def mouseMoveEvent(self, event):

 """Handle mouse movements. Track the coordinates of

 the mouse in the window and display them in the status

 bar."""

 mouse_pos = event.pos()

 if (event.buttons() and Qt.MouseButton.LeftButton) \

 and self.drawing:

 self.drawOnCanvas(mouse_pos)

 self.mouse_track_label.setVisible(True)

 sb_text = f"""<p>Mouse Coordinates: ({mouse_pos.x()},

 {mouse_pos.y()})</p>"""

 self.mouse_track_label.setText(sb_text)

 self.parent.status_bar.addWidget(

 self.mouse_track_label)

 def drawOnCanvas(self, points):

 """Performs drawing on canvas."""

 painter = QPainter(self.pixmap)

 if self.antialiasing_status:

 painter.setRenderHint(

 QPainter.RenderHint.Antialiasing)

Chapter 11 GraphiCs and animation in pyQt

321

 if self.eraser_selected == False:

 pen = QPen(QColor(self.pen_color), self.pen_width)

 painter.setPen(pen)

 painter.drawLine(self.last_mouse_pos, points)

 # Update the mouse's position for next movement

 self.last_mouse_pos = points

 elif self.eraser_selected == True:

 # Use the eraser

 eraser = QRect(points.x(), points.y(), 12, 12)

 painter.eraseRect(eraser)

 self.update()

The actual drawing is handled in drawOnCanvas(). An instance of QPainter is

created that draws on the pixmap. We also check a few conditions. These include

checking for antialiasing and whether or not eraser_selected is True or False. If its

value is False, the user can draw. Otherwise, they can erase.

The Canvas class also includes methods for clearing and saving the pixmap in

Listing 11-16.

Listing 11-16. Methods for clearing and saving in the Canvas class

painter.py

 def newCanvas(self):

 """Clears the current canvas."""

 self.pixmap.fill(Qt.GlobalColor.white)

 self.update()

 def saveFile(self):

 """Save a .png image file of current pixmap area."""

 file_format = "png"

 default_name = os.path.curdir + "/untitled." + \

 file_format

 file_name, _ = QFileDialog.getSaveFileName(

 self, "Save As",

 default_name, "PNG Format (*.png)")

 if file_name:

 self.pixmap.save(file_name, file_format)

Chapter 11 GraphiCs and animation in pyQt

322

For saving the file, we’ll open the current directory and display a default name in a

QFileDialog. The QPixmap method save() is used to save the image.

The reimplementation of the paintEvent() in Listing 11-17 creates a painter for the

canvas area and draws the pixmap using drawPixmap(). By first drawing on a QPixmap

in the drawOnCanvas() method and then copying the QPixmap onto the screen in the

paintEvent(), we can ensure that our drawing won’t be lost if the window is minimized.

Listing 11-17. Code for the paintEvent() event handler in the Canvas class

painter.py

 def paintEvent(self, event):

 """Create QPainter object.

 This is to prevent the chance of the painting being

 lost if the user changes windows."""

 painter = QPainter(self)

 target_rect = QRect()

 target_rect = event.rect()

 painter.drawPixmap(target_rect,

 self.pixmap, target_rect)

 painter.end()

That completes the Canvas class. Let’s move onto creating the MainWindow class.

 Creating the Painter GUI’s MainWindow Class
The MainWindow class in Listings 11-18 to 11-22 creates the main menu, toolbar, and tool

tips for each of the buttons in the toolbar as well as an instance of the Canvas class. The

base of the MainWindow class is set up in Listing 11-18.

Listing 11-18. Code for painter GUI’s MainWindow class

painter.py

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

Chapter 11 GraphiCs and animation in pyQt

323

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(900, 600)

 self.setWindowTitle("11.1 – Painter GUI")

 # Set a font style used by all tool tips

 QToolTip.setFont(QFont("Helvetica", 12))

 self.setUpMainWindow()

 self.createActions()

 self.createMenu()

 self.createToolbar()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setAttribute(

 Qt.ApplicationAttribute.AA_DontShowIconsInMenus, True)

 window = MainWindow()

 sys.exit(app.exec())

The application’s central widget is a single Canvas object in Listing 11-19.

Listing 11-19. Code for painter GUI’s setUpMainWindow() method

painter.py

 def setUpMainWindow(self):

 """Create the canvas object that inherits from

 QLabel."""

 self.canvas = Canvas(self)

 self.setCentralWidget(self.canvas)

Listing 11-20 builds the actions and menus located in the GUI’s menu bar.

Listing 11-20. Code for painter GUI’s createActions() and createMenu() methods

painter.py

 def createActions(self):

 """Create the application's menu actions."""

Chapter 11 GraphiCs and animation in pyQt

324

 # Create actions for File menu

 self.new_act = QAction("New Canvas")

 self.new_act.setShortcut("Ctrl+N")

 self.new_act.triggered.connect(self.canvas.newCanvas)

 self.save_file_act = QAction("Save File")

 self.save_file_act.setShortcut("Ctrl+S")

 self.save_file_act.triggered.connect(

 self.canvas.saveFile)

 self.quit_act = QAction("Quit")

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

 # Create actions for Tool menu

 self.anti_al_act = QAction(

 "AntiAliasing", checkable=True)

 self.anti_al_act.triggered.connect(

 self.turnAntialiasingOn)

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create File menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.new_act)

 file_menu.addAction(self.save_file_act)

 file_menu.addSeparator()

 file_menu.addAction(self.quit_act)

 # Create Tools menu and add actions

 file_menu = self.menuBar().addMenu("Tools")

 file_menu.addAction(self.anti_al_act)

 self.status_bar = QStatusBar()

 self.setStatusBar(self.status_bar)

Chapter 11 GraphiCs and animation in pyQt

325

The File menu in createMenu() contains actions for clearing the canvas, saving the

image, and quitting the application. The Tools menu contains a checkable menu item

that turns antialiasing on or off.

The createToolbar() method creates the actions and icons for the drawing tools

in the application’s toolbar. If a button is pressed, it emits the triggered signal that is

connected to the Canvas class’s selectDrawingTool() slot. Using a lambda function,

we can pass additional information to the slot. For each action, we’ll pass a string to

selectDrawingTool().

Listing 11-21. Code for painter GUI’s createToolbar() method

painter.py

 def createToolbar(self):

 """Create the application's toolbar that contains

 painting tools."""

 tool_bar = QToolBar("Painting Toolbar")

 tool_bar.setIconSize(QSize(24, 24))

 # Set orientation of toolbar to the left side

 self.addToolBar(Qt.ToolBarArea.LeftToolBarArea,

 tool_bar)

 tool_bar.setMovable(False)

 # Create actions and tooltips and add them to the

 # toolbar

 pencil_act = QAction(QIcon("icons/pencil.png"),

 "Pencil", tool_bar)

 pencil_act.setToolTip("This is the Pencil.")

 pencil_act.triggered.connect(

 lambda: self.canvas.selectDrawingTool("pencil"))

 marker_act = QAction(QIcon("icons/marker.png"),

 "Marker", tool_bar)

 marker_act.setToolTip("This is the Marker.")

 marker_act.triggered.connect(

 lambda: self.canvas.selectDrawingTool("marker"))

 eraser_act = QAction(QIcon("icons/eraser.png"),

 "Eraser", tool_bar)

Chapter 11 GraphiCs and animation in pyQt

326

 eraser_act.setToolTip(

 "Use the Eraser to make it all disappear.")

 eraser_act.triggered.connect(

 lambda: self.canvas.selectDrawingTool("eraser"))

 color_act = QAction(QIcon("icons/colors.png"),

 "Colors", tool_bar)

 color_act.setToolTip(

 "Choose a Color from the Color dialog.")

 color_act.triggered.connect(

 lambda: self.canvas.selectDrawingTool("color"))

 tool_bar.addAction(pencil_act)

 tool_bar.addAction(marker_act)

 tool_bar.addAction(eraser_act)

 tool_bar.addAction(color_act)

Creating tool tips is covered in the upcoming subsection, “Creating Tool Tips for

Widgets.”

The turnAntialiasingOn() slot in Listing 11-22 updates the Canvas class’s variable,

antialiasing_status. The reimplemented leaveEvent() handles if the mouse cursor

moves outside the main window and sets the mouse_track_label’s visibility to False.

Listing 11-22. Additional methods used in the painter GUI’s MainWindow class

painter.py

 def turnAntialiasingOn(self, state):

 """Turn antialiasing on or off."""

 if state:

 self.canvas.antialiasing_status = True

 else:

 self.canvas.antialiasing_status = False

 def leaveEvent(self, event):

 """QEvent class that is called when mouse leaves

 screen's space. Hide mouse coordinates in status

 bar if mouse leaves the window."""

 self.canvas.mouse_track_label.setVisible(False)

Chapter 11 GraphiCs and animation in pyQt

327

 Creating Tool Tips for Widgets

A user may often find themselves wondering what a widget or action in a menu or

toolbar actually does in an application. Perhaps, additional information is needed to

help the user understand how to interact with a tool.

Tool tips are useful little bits of text that can be displayed to inform someone of a

widget’s function. Tools tips can be applied to any widget by using the setToolTip()

method. Tips can display rich text formatted strings as shown in the sample of code from

Listing 11-21 and in Figure 11-7.

 eraser_act.setToolTip(

 "Use the Eraser to make it all disappear.")

Figure 11-7. The tool tip that is displayed when the user hovers over the
eraser button

The font style and appearance of a tool tip can be adapted to fit your preferences.

In the upcoming sections, we’ll explore how to animate widgets and other objects in

graphical interfaces.

 Animating Scenes with QPropertyAnimation
The following project serves as an introduction to Qt’s Graphics View Framework and

the QAnimationProperty class. With the framework, applications can be created that

allow users to interact with the items in the window.

Chapter 11 GraphiCs and animation in pyQt

328

A Graphics View is comprised of three components:

 1. A scene created from the QGraphicsScene class. The scene creates

the surface for managing 2D graphical items and must be created

along with a view to visualize a scene.

 2. QGraphicsView provides the view widget for visualizing the

elements of a scene, creating a scroll area that allows the user to

navigate in the scene.

 3. Items in the scene are based on the QGraphicsItem class. Users

can interact with graphical items through mouse and key events

and drag and drop. Items also support collision detection.

QAnimationProperty is used to animate the properties of widgets and items.

Animations in GUIs can be used for animating widgets. For example, you could animate

a button that grows, shrinks, or rotates, or text that smoothly moves around in the

window, or create widgets that fade in and out or change colors. QAnimationProperty

only works with objects that inherit the QObject class. QObject is the base class for all

objects created in Qt.

Qt provides a number of simple items that inherit QGraphicsItem, including basic

shapes, text, and pixmaps. These items already provide support for mouse and keyboard

interaction. However, QGraphicsItem does not inherit QObject. Therefore, if you want to

animate a graphics item with QPropertyAnimation, you must first create a new class that

inherits from QObject and define new properties for the item.

Figure 11-8 shows an example of the scene we are going to create in this project.

Chapter 11 GraphiCs and animation in pyQt

329

Figure 11-8. A scene with a car and tree objects that move in the window

Before beginning, make sure that you have downloaded the images folder from the

GitHub repository.

 Explanation for Animating Scenes
In the following application, you will find out how to create new properties for items

using pyqtProperty, learn how to animate objects using the QPropertyAnimation class,

and create a Qt Graphics View for displaying the items and animations.

Since we are going to create a Graphics Scene, we need to import QGraphicsScene,

QGraphicsView, and one of the QGraphicsItem classes in Listing 11-23. For this program,

we import QGraphicsPixmapItem since we will be working with pixmaps. While we can

use QPropertyAnimation to animate the properties of widgets, some classes do not have

access to some Qt properties. For example, there is no method for changing the color

of QLabel text. In those situations, new Qt properties can be made using pyqtProperty.

We’ll explore this topic more in the “Introduction to Animating Widgets” section.

Chapter 11 GraphiCs and animation in pyQt

330

Listing 11-23. Importing classes for the animation example

animation.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QGraphicsView,

 QGraphicsScene, QGraphicsPixmapItem)

from PyQt6.QtCore import (QObject, QPointF, QRectF,

 QPropertyAnimation, pyqtProperty)

from PyQt6.QtGui import QPixmap

Also, we won’t need to import QMainWindow or QWidget to create the main window

since QGraphicsView will act as the window for presenting the animation.

QObject does not have a position property. Therefore, we’ll need to define one with

pyqtProperty in the Objects class in Listing 11-24.

Listing 11-24. Creating the Objects class that inherits QObject

animation.py

Create Objects class that defines the position property of

instances of the class using pyqtProperty.

class Objects(QObject):

 def __init__(self, image_path):

 super().__init__()

 item_pixmap = QPixmap(image_path)

 resize_item = item_pixmap.scaledToWidth(150)

 self.item = QGraphicsPixmapItem(resize_item)

 def _set_position(self, position):

 self.item.setPos(position)

 position = pyqtProperty(QPointF, fset=_set_position)

QGraphicsPixmapItem creates a graphics item from pixmap that can be added into

a QGraphicsScene. We create a position property that allows us to set and update

the position of the object using fset. The _set_position() parameter passes the

Chapter 11 GraphiCs and animation in pyQt

331

position to the QGraphicsItem.setPos() method, setting the position of the item as the

coordinates specified by QPointF. Underscores in the front of variable, method, or class

names are used to denote private instances.

The goal of this project is to animate two items, a car and a tree, in a QGraphicsScene.

The code in Listing 11-25 is similar to GUI applications we’ve made before. However,

instead of QWidget, we’ll use QGraphicsView to present the objects in the window.

Listing 11-25. Creating the AnimationScene class for visualizing the animations

animation.py

class AnimationScene(QGraphicsView):

 def __init__(self):

 super().__init__()

 self.initializeView()

 def initializeView(self):

 """Initialize the graphics view and display its

 contents to the screen."""

 self.setMaximumSize(700, 450)

 self.setWindowTitle("Animation Example")

 self.createObjects()

 self.createScene()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = AnimationScene()

 sys.exit(app.exec())

The createObjects() method is used to create objects, and createScene() will set

up the scene.

Let’s first create the objects and the animations that will be placed into the scene.

For this scene, the two items will move at the same time. Qt provides other classes for

handling groups of animations, but for Listing 11-26, QPropertyAnimation and the

animations list are used to keep track of the multiple animations.

Chapter 11 GraphiCs and animation in pyQt

332

Listing 11-26. Code for the createObjects() method in the AnimationScene class

animation.py

 def createObjects(self):

 """Create instances of the Objects class, and set

 up the object animations."""

 # List that holds all of the animations.

 animations = []

 # Create the car object and car animation.

 self.car = Objects("images/car.png")

 self.car_anim = QPropertyAnimation(self.car,

 b"position")

 self.car_anim.setDuration(6000)

 self.car_anim.setStartValue(QPointF(-50, 350))

 self.car_anim.setKeyValueAt(0.3, QPointF(150, 350))

 self.car_anim.setKeyValueAt(0.6, QPointF(170, 350))

 self.car_anim.setEndValue(QPointF(750, 350))

 # Create the tree object and tree animation.

 self.tree = Objects("images/trees.png")

 self.tree_anim = QPropertyAnimation(self.tree,

 b"position")

 self.tree_anim.setDuration(6000)

 self.tree_anim.setStartValue(QPointF(750, 150))

 self.tree_anim.setKeyValueAt(0.3, QPointF(170, 150))

 self.tree_anim.setKeyValueAt(0.6, QPointF(150, 150))

 self.tree_anim.setEndValue(QPointF(-150, 150))

 # Add animations to the animations list, and start the

 # animations once the program begins running.

 animations.append(self.car_anim)

 animations.append(self.tree_anim)

 for anim in animations:

 anim.start()

Chapter 11 GraphiCs and animation in pyQt

333

We’ll create the car item as an instance of the Objects class and pass car and the

position setter to QPropertyAnimation. QPropertyAnimation will update the value of

position so that the car moves across the scene. To animate items, use setDuration()

to set the amount of time the object moves in milliseconds and specify start and end

values of the property with setStartValue() and setEndValue(). The animation for the

car is six seconds and starts off-screen going from the left side to the right. The tree is set

up in a similar manner, but traveling in the opposite direction.

The setKeyValueAt() method allows us to create key frames at the given steps with

the specified QPointF values. Using the key frames, the car and tree will appear to slow

down as they pass in the scene. The start() method begins the animation.

Setting up a scene is simple. Create an instance of the scene, set the scene’s size, add

objects and their animations using addItem(), and then call setScene(). This is handled

in Listing 11-27.

Listing 11-27. Code for the createScene() method in the AnimationScene class

animation.py

 def createScene(self):

 """Create the graphics scene and add Objects instances

 to the scene."""

 self.scene = QGraphicsScene(self)

 self.scene.setSceneRect(0, 0, 700, 450)

 self.scene.addItem(self.car.item)

 self.scene.addItem(self.tree.item)

 self.setScene(self.scene)

 def drawBackground(self, painter, rect):

 """Reimplement QGraphicsView's drawBackground()

 method."""

 scene_rect = self.scene.sceneRect()

 background = QPixmap("images/highway.jpg")

 bg_rectf = QRectF(background.rect())

 painter.drawPixmap(scene_rect, background, bg_rectf)

Finally, a scene can be given a background using QBrush. If you want to use

a background image, you will need to reimplement the QGraphicView class’s

drawBackground() method as demonstrated in Listing 11-27.

Chapter 11 GraphiCs and animation in pyQt

334

 Introduction to Animating Widgets
We’ve experienced using widgets and setting their parameters. But what if you were also

able to animate the properties, such as size, color, text, and position, of widgets? With the

QPropertyAnimation class, we are able to animate Qt properties, such as geometry, size,

and text. These properties refer to the getter methods found within each class.

For this introductory example, we’ll take a look at how to animate the size of

QPushButton and the color of the text of QCheckBox. While size is a built-in property of all

PyQt widgets, color is not. For QCheckBox, we’ll see how to use pyqtProperty to create a

new property.

In Figure 11-9, you’ll notice two widgets. When the button is pressed in the left

screenshot, its size will grow and shrink. The button will then become disabled, and the

QCheckBox widget’s text will flash red. When the check box is checked, the state of the

window will return back to normal.

Figure 11-9. Animated widgets that use signals and slots to mutually
change states

The following list contains a few useful methods from QPropertyAnimation:

• start() – Starts the animation

• stop() – Stops the animation

• setStartValue(value) – Sets the starting value of the animation

• setEndValue(value) – Sets the ending value of the animation

• setDuration(int) – Sets the duration of the animation (in

milliseconds)

Chapter 11 GraphiCs and animation in pyQt

335

• setKeyValueAt(step, value) – Creates a key frame at the given

step (from 0.0 to 1.0) with the given value

• setLoopCount(int) – Sets the number of times the animation is

repeated; use -1 for infinite times

Many of these methods are inherited from QVariantAnimation, one of the base

classes for animation classes.

 Explanation for Animating Widgets
For this application, we can use the basic_window.py script from Chapter 1 and import

a variety of new classes. QAbstractAnimation is the base class for all animation classes.

QEasingCurve is used to define and control the smoothness of an animation.

Two types of classes also exist for grouping multiple animations together:

• QParallelAnimationGroup – Runs animations in parallel

• QSequentialAnimationGroup – Runs animations as a sequence

For this program, we’ll import QSequentialAnimationGroup in Listing 11-28.

Listing 11-28. Code for imports and custom QCheckBox in the animating

widgets example

animate_widgets.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QPushButton, QCheckBox, QVBoxLayout)

from PyQt6.QtCore import (QAbstractAnimation, QRect, QSize,

 QPoint, QEasingCurve, pyqtProperty,

 QPropertyAnimation, QSequentialAnimationGroup)

from PyQt6.QtGui import QColor

class AnimatedCheckbox(QCheckBox):

 def __init__(self, text):

 """Custom QCheckBox with animated text."""

 super().__init__(text)

Chapter 11 GraphiCs and animation in pyQt

336

 def _set_color(self, color):

 """Method for the color property of the text using

 style sheets."""

 self.setStyleSheet(

 f"""color: rgb({color.red()}, {color.green()},

 {color.blue()})""")

 color = pyqtProperty(QColor, fset=_set_color)

While QCheckBox displays text and has a text property, the class does not have property

for changing the text’s color. Therefore, let’s create a private method, _set_color(), where

we define the property we want to change. In the method, we can use style sheets to update

the color of the text. The pyqtProperty, color, is the name of our new property.

Listing 11-29 sets up the MainWindow class and builds the setUpMainWindow()

method. The main window consists of two widgets, a check box and a push button,

arranged in a QVBoxLayout.

Listing 11-29. Setting up the MainWindow class and the setUpMainWindow()

method in the animating widgets example

animate_widgets.py

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(240, 120)

 self.setWindowTitle("Animating Widgets")

 self.setUpMainWindow()

 self.show()

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.update_cb = AnimatedCheckbox("Normal")

 self.update_cb.stateChanged.connect(self.stopFlashing)

Chapter 11 GraphiCs and animation in pyQt

337

 self.status_button = QPushButton("Status Changed")

 self.status_button.clicked.connect(

 self.startAnimations)

 # Create animation instances

 self.cb_anim = QPropertyAnimation(

 self.update_cb, b"color")

 self.button_anim = QPropertyAnimation(

 self.status_button, b"geometry")

 self.seq_group = QSequentialAnimationGroup()

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.update_cb)

 main_v_box.addWidget(self.status_button)

 self.setLayout(main_v_box)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

The update_cb object displays Normal in the beginning. Its stateChanged signal is

connected to the stopFlashing() slot that we’ll code in Listing 11-31.

For status_button, clicking the button will start the different animations. There are

two property animation objects and one group to manage the animations instantiated in

setUpMainWindow().

The cb_anim object animates the color of update_cb, while button_anim takes

care of the geometry property for status_button. We’ll use geometry to get the x and y

coordinates as well as the size of the button. Last, seq_group will manage the animations

and play them in order.

A widget’s geometry can be collected using the geometry() method. The start_

geometry variable in Listing 11-30 holds the initial QPoint and QSize values of status_

button. (The geometry() getter actually returns a QRect object, and a rectangle can be

broken down into its top-left-corner position and size values.)

Chapter 11 GraphiCs and animation in pyQt

338

Listing 11-30. Code for the startAnimations() slot in the animating

widgets example

animate_widgets.py

 def startAnimations(self):

 """Play the animations and update the states of the

 widgets."""

 # Collect the button's initial geometry values.

 # start_geometry is a QRect object

 start_geometry = self.status_button.geometry()

 # Set up the button's animation for changing its size

 self.button_anim.setEasingCurve(

 QEasingCurve.Type.InOutSine)

 self.button_anim.setDuration(1000)

 self.button_anim.setStartValue(start_geometry)

 self.button_anim.setKeyValueAt(0.5, QRect(QPoint(

 start_geometry.x() - 4, start_geometry.y() - 4),

 QSize(start_geometry.width() + 8,

 start_geometry.height() + 8)))

 self.button_anim.setEndValue(start_geometry)

 # Untoggle the check box if it is toggled

 if self.update_cb.isChecked():

 self.update_cb.toggle()

 self.update_cb.setText("RED ALERT!")

 # Set up the check box's animation for changing its

 # color

 self.cb_anim.setDuration(500)

 self.cb_anim.setLoopCount(-1)

 self.cb_anim.setStartValue(QColor(0, 0, 0))

 self.cb_anim.setEndValue(QColor(255, 0, 0))

 # Start the sequential sequence

 self.seq_group.addAnimation(self.button_anim)

 self.seq_group.addAnimation(self.cb_anim)

 self.seq_group.start()

Chapter 11 GraphiCs and animation in pyQt

339

 # Finally, disable the button

 self.status_button.setEnabled(False)

With the geometry of the button acquired, we’ll specify a few parameters for its

animation. Easing curves in animation allow smoother visual transitions from one

animation to another. QEasingCurve is used along the start, stop, or key frame values to

control the transition of the animation. Here, we’ll use the QEasingCurve.Type enum

to specify an easing curve. The flag InOutSine uses a sinusoidal curve for the button’s

animation. For a full list of easing curves, take a look at https://doc.qt.io/qt- 6/

qeasingcurve.html#Type- enum.

The animation will occur for one second. The first argument to setKeyValue() is

used to specify a key frame, which is the half-way point for this animation. The QRect

object passed to setKeyValue() is used to increase the size of status_button. This will

help to keep the button center during the animation. After half a second, the widget will

shrink back to its original geometry.

For a single animation, the next step would be to call start(). However, since cb_

anim will follow the button’s animation, the QSequentialAnimationGroup instance will

handle starting the animations.

A few checks are also performed to update the state and text of the QCheckBox. Using

cb_anim and a loop count of -1, the check box’s text will continue to flash red until the

user checks the box. We’ll disable the button so the user is forced to do so.

When the check box is finally checked, the stateChanged signal will trigger the

stopFlashing() slot in Listing 11-31.

Listing 11-31. Code for the stopFlashing() slot and closeEvent() in the animating

widgets example

animate_widgets.py

 def stopFlashing(self):

 """Stop animations when the check box is checked."""

 self.seq_group.stop()

 # Update widgets

 self.update_cb.setText("Normal")

 self.update_cb.setStyleSheet("color: rgb(0, 0, 0)")

 self.status_button.setEnabled(True)

Chapter 11 GraphiCs and animation in pyQt

https://doc.qt.io/qt-6/qeasingcurve.html#Type-enum
https://doc.qt.io/qt-6/qeasingcurve.html#Type-enum

340

 def closeEvent(self, event):

 """Ensure that animations are stopped when closing

 the window to avoid errors.”""

 running = QAbstractAnimation.State.Running

 if self.seq_group.state == running:

 self.seq_group.stop()

 event.accept()

The seq_group object will first stop both animations. Next, the values and states of

the widgets are returned back to normal. Finally, the closeEvent() stops the animations

if they are still running.

While this is only a simple example, the use of painting and animations can be used

to draw attention, create engaging interfaces, and clearly and effectively communicate

purpose better than any standard or static GUI can.

 Summary
PyQt6’s graphics and painting system is an extensive topic that could be an entire book

by itself. The QPainter class is important for performing the painting on widgets and on

other paint devices. QPainter works together with the QPaintEngine and QPaintDevice

classes to provide the tools you need for creating two-dimensional drawing applications.

We have taken a look at some of the QPainter class’s functions for drawing lines and

primitive and abstract shapes. Together with QPen, QBrush, and QColor, QPainter is able

to create some rather beautiful digital images. To materialize this concept, we created

a simple painting application. Hopefully, you’ll improve that application and add even

more drawing features.

We also saw how to create properties for objects made from the QObject class and

then animate those objects in the Qt Graphics View Framework. It is not covered in this

book, but you could use the Graphics View to create a GUI with items that are interactive.

We also used QPropertyAnimation to animate widget properties.

In Chapter 12, we’ll take a look at how to create custom widgets in PyQt.

Chapter 11 GraphiCs and animation in pyQt

341
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_12

CHAPTER 12

Creating Custom Widgets
While most development tasks can be solved with buttons, text editing widgets, and

other components provided by PyQt, you may at some point find yourself in a situation

where no single widget provides you with the tools or functionality that you need.

You might even find yourself needing to use a widget you made in other GUIs and

therefore need a way to easily import your custom-made widget into other applications.

Thankfully, PyQt allows developers to build and import their own widgets for solving

new and unforeseen tasks.

In this chapter, you will

• Find out about creating your own custom widgets in PyQt

• See how to apply the custom widget built in a small example GUI

• Learn about Qt’s four image handling classes

• Use a new widget, QSlider, for selecting values in a bounded range

Let’s learn about the custom widget we’ll build in the following sections.

 Project 12.1 – RGB Slider Custom Widget
For this chapter’s project, we are going to take a look at making a custom, functional

widget in PyQt. While PyQt offers a variety of widgets for building GUIs, every once in a

while you may find yourself needing to design and build your own. One of the benefits

of creating a customized widget is that you can either create a general widget that can be

used by many different applications or make an application-specific widget that allows

you to solve a specific problem.

There are quite a few techniques that you can use to create your own widgets, most

of which we have already seen in previous examples.

https://doi.org/10.1007/978-1-4842-7999-1_12

342

• Modifying the properties of PyQt’s widgets by using built-in methods,

such as setAlignment(), setTextColor(), and setRange()

• Creating style sheets to change a widget’s existing behavior and

appearances

• Subclassing widgets and reimplementing event handlers, or adding

properties dynamically to QWidget classes

• Creating composite widgets that are made up of two more types of

widgets and arranged together using a layout

• Designing a completely new widget that subclasses QWidget and has

its own unique properties and appearance

The RGB slider, shown in Figure 12-1, actually is created by combining a few of the

techniques listed previously. The widget uses Qt’s QSlider and QSpinBox widgets for

selecting RGB values and displays the color on QLabel widgets. The look of the sliders

is modified by using style sheets. All of the widgets are then assembled into a parent

widget, which we can then import into other PyQt applications.

Chapter 12 Creating Custom Widgets

343

Figure 12-1. A custom widget used to select colors using sliders and spin boxes

Before finding out how to make the RGB slider widget, we’ll need to learn a little

more about some of the classes we will need to build the application.

 PyQt’s Image Handling Classes
In previous examples, we worked with QPixmap to handle image data. Qt actually provides

four different classes for working with images, each with their own special purpose.

QPixmap is the go-to choice for displaying images on the screen. Pixmaps can

be presented on a variety of widgets that can display icons, including QLabel and

QPushButton. QImage is optimized for reading, writing, and manipulating images and

is very useful if you need to directly access and modify an image’s pixel data. QImage

Chapter 12 Creating Custom Widgets

344

can also act as a paint device. A paint device (created by the QPaintDevice class) is a

 two- dimensional surface that can be drawn on using QPainter. It is also worth noting

that QImage inherits QPaintDevice.

Conversion between QImage and QPixmap is also possible. One possibility for using

the two classes together is to load an image file with QImage, manipulate the image data,

and then convert the image to a pixmap before displaying it on the screen. The RGB

slider widget gives an example for converting between the two classes.

QBitmap is a subclass of QPixmap and provides monochrome (1-bit depth) pixmaps.

QPicture is a paint device that replays QPainter commands, meaning you can create a

picture from whatever image format you are painting on. Pictures created with QPicture

are resolution independent, appearing the same no matter what image format you use,

such as png, svg, or pdf.

The RGB slider uses two types of widgets for selecting RGB values: QSpinBox, which

was introduced in Chapter 4, and a new widget.

 The QSlider Widget
The QSlider class provides a developer with a tool for selecting integer values within

a bounded range. Sliders provide users with a convenient means for quickly selecting

values or changing settings with only the slide of a simple handle. By default, sliders are

arranged vertically (specified by Qt.Orientation.Vertical), but that can be changed by

passing the flag Qt.Orientation.Horizontal to the constructor.

The following block of code demonstrates how to create an instance of QSlider,

set the slider’s maximum range value, and connect to the signal valueChanged that is

emitted whenever the slider’s value has changed.

slider = QSlider(Qt.Horizontal, self)

Default values are from 0 to 99

slider.setMaximum(200)

slider.valueChanged.connect(self.printSliderValue)

def printSliderValue(self, value):

 print(value)

Here, the slider’s maximum range is 200, and its value is printed to the shell

whenever the slider’s position changes.

Chapter 12 Creating Custom Widgets

345

 Explanation for the RGB Slider Widget
The RGB slider is a custom widget created by combining a few of Qt’s built-in widgets:

QLabel, QSlider, and QSpinBox. The appearance of the sliders is adjusted using style

sheets so that they give visual feedback to the user about which RGB value they are

adjusting. The sliders and spin boxes are connected together so that their values are in

sync and so that the user can see the integer value on the RGB scale. The RGB values are

also converted to hexadecimal format and displayed on the widget.

The sliders and spin boxes can be used to either find out the RGB or hexadecimal

values for a color or use the reimplemented mousePressEvent() method so that a user

can click on a pixel in an image to find out the pixel’s RGB value. An example of this is

shown in the “RGB Slider Demo” section, where you will also see how to import the RGB

slider in a demo application.

We need to import quite a few classes in Listing 12-1. The classes for working with

images in PyQt are found in the QtGui module. Another class worth mentioning, qRgb, is

actually a typedef that creates an unsigned int representing the RGB value triplet (r, g, b).

A typedef in C++ is a keyword that is used to create a new name for a data type, in this

case to represent the RGB value.

Listing 12-1. The imports for the RGB slider

rgb_slider.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QSlider, QSpinBox, QHBoxLayout, QVBoxLayout, QGridLayout)

from PyQt6.QtGui import QImage, QPixmap, QColor, qRgb, QFont

from PyQt6.QtCore import Qt

The style sheet that follows in Listing 12-2 is used to change the appearance of the

sliders. We want to modify their appearance so that they give the user more feedback

about which RGB values are being changed. Each slider is given an ID Selector using the

setObjectName() method in the setUpMainWindow() method. If no ID Selector is used in

the style sheet, then that style is applied to all of the QSlider objects.

Chapter 12 Creating Custom Widgets

346

Listing 12-2. The style sheet for the RGB slider, part 1

rgb_slider.py

style_sheet = """

 QSlider:groove:horizontal{

 border: 1px solid #000000;

 background: white;

 height: 10 px;

 border-radius: 4px

 }

 QSlider#Red:sub-page:horizontal{

 background: qlineargradient(x1:1, y1:0, x2:0, y2:1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1:0, y1:1, x2:1, y2:1,

 stop: 0 #1C1C1C, stop: 1 #FF0000);

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider::add-page:horizontal {

 background: #FFFFFF;

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider::handle:horizontal {

 background: qlineargradient(x1:0, y1:0, x2:1, y2:1,

 stop: 0 #EEEEEE, stop: 1 #CCCCCC);

 border: 1px solid #4C4B4B;

 width: 13px;

 margin-top: -3px;

 margin-bottom: -3px;

 border-radius: 4px;

 }

Chapter 12 Creating Custom Widgets

347

 QSlider::handle:horizontal:hover {

 background: qlineargradient(x1:0, y1:0, x2:1, y2:1,

 stop: 0 #FFFFFF, stop: 1 #DDDDDD);

 border: 1px solid #393838;

 border-radius: 4px;

 }

The sliders use linear gradients so that users can get a visual representation of how

much of the red, green, and blue colors are being used. With linear gradients, the color is

interpolated from x1, y1 to x2, y2. The pseudostate horizontal is used to specify that the

styles will be applied to horizontal QSlider objects.

The groove subcontrol refers to the long, rectangular part of the slider, which is

solid white before moving the handle of the slider. The add-page subcontrol denotes the

color of the slider parts before the handle, and sub-page denotes the color after. For the

handle, the color will change whenever the mouse hovers over it.

The only changes that need to be made for the Green and Blue sliders are to the

sub- page subcontrols. These changes are handled in Listing 12-3. You can also refer back

to Chapter 6 for a refresher about style sheets.

Listing 12-3. The style sheet for the RGB slider, part 2

rgb_slider.py

 QSlider#Green:sub-page:horizontal{

 background: qlineargradient(x1:1, y1:0, x2:0, y2:1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1:0, y1:1, x2:1, y2:1,

 stop: 0 #1C1C1C, stop: 1 #00FF00);

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

 QSlider#Blue:sub-page:horizontal{

 background: qlineargradient(x1:1, y1:0, x2:0, y2:1,

 stop: 0 #FF4242, stop: 1 #1C1C1C);

 background: qlineargradient(x1:0, y1:1, x2:1, y2:1,

 stop: 0 #1C1C1C, stop: 1 #0000FF);

Chapter 12 Creating Custom Widgets

348

 border: 1px solid #4C4B4B;

 height: 10px;

 border-radius: 4px;

 }

"""

The RGBSlider class inherits QWidget in Listing 12-4. For this class, the user can pass

an image and other arguments as parameters to the constructor.

Listing 12-4. Code to start building the RGBSlider class

rgb_slider.py

class RGBSlider(QWidget):

 def __init__(self, _image=None, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self._image = _image

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(225, 300)

 self.setWindowTitle("12.1 - RGB Slider")

 # Store the current pixel value

 self.current_val = QColor()

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = RGBSlider()

 sys.exit(app.exec())

The current_val instance variable will be used to keep track of the current RGB

color value. The color, of course, will be composed by the slider and spin box values.

In setUpMainWindow() in Listing 12-5, a QImage object is created that will display the

color created from the RGB values. Using the QImage method fill(), the first color that

Chapter 12 Creating Custom Widgets

349

will show when the application is run is black. To display the image in the widget, first

convert the QImage to a QPixmap using the QPixmap method fromImage() and pass it a

QImage instance. Then use setPixmap() to set the QLabel widget’s pixmap.

Listing 12-5. Code for the setUpMainWindow() method in the RGBSlider

class, part 1

rgb_slider.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Image that will display the current color set by

 # slider/spin_box values

 self.color_display = QImage(

 100, 100, QImage.Format.Format_RGBX64)

 self.color_display.fill(Qt.GlobalColor.black)

 self.cd_label = QLabel()

 self.cd_label.setPixmap(

 QPixmap.fromImage(self.color_display))

 self.cd_label.setScaledContents(True)

The contents of cd_label are then scaled to fit the window’s size.

 Updating the Sliders and Spin Boxes

Next, we create the red, green, and blue QSlider and QSpinBox widgets in Listing 12-6.

The sliders’ maximum values are set to 255, since RGB values are in the range of 0–255.

Each slider is also given an object name that is used to identify it in the style sheet.

Listing 12-6. Code for the setUpMainWindow() method in the RGBSlider

class, part 2

rgb_slider.py

 # Create RGB sliders and spin boxes

 red_label = QLabel("Red")

 red_label.setFont(QFont("Helvetica", 14))

 self.red_slider = QSlider(Qt.Orientation.Horizontal)

 self.red_slider.setObjectName("Red")

 self.red_slider.setMaximum(255)

Chapter 12 Creating Custom Widgets

350

 self.red_spinbox = QSpinBox()

 self.red_spinbox.setMaximum(255)

 green_label = QLabel("Green")

 green_label.setFont(QFont("Helvetica", 14))

 self.green_slider = QSlider(Qt.Orientation.Horizontal)

 self.green_slider.setObjectName("Green")

 self.green_slider.setMaximum(255)

 self.green_spinbox = QSpinBox()

 self.green_spinbox.setMaximum(255)

 blue_label = QLabel("Blue")

 blue_label.setFont(QFont("Helvetica", 14))

 self.blue_slider = QSlider(Qt.Orientation.Horizontal)

 self.blue_slider.setObjectName("Blue")

 self.blue_slider.setMaximum(255)

 self.blue_spinbox = QSpinBox()

 self.blue_spinbox.setMaximum(255)

The two labels instantiated in Listing 12-7 will display the hexadecimal value

of the color. They are then arranged in a QHBoxLayout, which is set as the layout for

hex_container.

Listing 12-7. Code for the setUpMainWindow() method in the RGBSlider

class, part 3

rgb_slider.py

 # Use the hex labels to display color values in hex

 # format

 hex_label = QLabel("Hex Color ")

 self.hex_values_label = QLabel()

 hex_h_box = QHBoxLayout()

 hex_h_box.addWidget(

 hex_label, Qt.AlignmentFlag.AlignRight)

 hex_h_box.addWidget(self.hex_values_label,

 Qt.AlignmentFlag.AlignRight)

Chapter 12 Creating Custom Widgets

351

 hex_container = QWidget()

 hex_container.setLayout(hex_h_box)

 # Create grid layout for sliders and spin boxes

 grid = QGridLayout()

 grid.addWidget(

 red_label, 0, 0, Qt.AlignmentFlag.AlignLeft)

 grid.addWidget(self.red_slider, 1, 0)

 grid.addWidget(self.red_spinbox, 1, 1)

 grid.addWidget(

 green_label, 2, 0, Qt.AlignmentFlag.AlignLeft)

 grid.addWidget(self.green_slider, 3, 0)

 grid.addWidget(self.green_spinbox, 3, 1)

 grid.addWidget(

 blue_label, 4, 0, Qt.AlignmentFlag.AlignLeft)

 grid.addWidget(self.blue_slider, 5, 0)

 grid.addWidget(self.blue_spinbox, 5, 1)

 grid.addWidget(hex_container, 6, 0, 1, 0)

From there, the sliders, spin boxes, and container for the labels are organized in a

QGridLayout.

 Updating the Colors

QSlider and QSpinBox can both emit the valueChanged signal. We can connect the sliders

and spin boxes so that their values change relative to each other. For example, when red_

slider emits a signal, it triggers the updateRedSpinBox() slot, which then updates the red_

spinbox value using setValue(). A similar process happens for the red_spinbox. This

process also happens for the sliders and spin boxes that control the blue and green values.

Take a look at the valueChanged signals in Listing 12-8 for a slider and its

corresponding spin box and you will notice that they trigger slots that update each other.

Listing 12-8. Code for the setUpMainWindow() method in the RGBSlider

class, part 4

rgb_slider.py

 # The sliders and spin boxes for each color should

 # display the same values and be updated at the same

Chapter 12 Creating Custom Widgets

352

 # time

 self.red_slider.valueChanged.connect(

 self.updateRedSpinBox)

 self.red_spinbox.valueChanged.connect(

 self.updateRedSlider)

 self.green_slider.valueChanged.connect(

 self.updateGreenSpinBox)

 self.green_spinbox.valueChanged.connect(

 self.updateGreenSlider)

 self.blue_slider.valueChanged.connect(

 self.updateBlueSpinBox)

 self.blue_spinbox.valueChanged.connect(

 self.updateBlueSlider)

 # Create container for rgb widgets

 rgb_widgets = QWidget()

 rgb_widgets.setLayout(grid)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.cd_label)

 main_v_box.addWidget(rgb_widgets)

 self.setLayout(main_v_box)

All of the widgets along with cd_label from Listing 12-5 are contained in rgb_

widgets and arranged in the main layout.

Let’s take a look at the slots in Listing 12-9 for updating the widget values.

Listing 12-9. Code for the slots that update the slider and spin box values

rgb_slider.py

 # The following slots update the red, green and blue

 # sliders and spin boxes

 def updateRedSpinBox(self, value):

 self.red_spinbox.setValue(value)

 self.redValue(value)

Chapter 12 Creating Custom Widgets

353

 def updateRedSlider(self, value):

 self.red_slider.setValue(value)

 self.redValue(value)

 def updateGreenSpinBox(self, value):

 self.green_spinbox.setValue(value)

 self.greenValue(value)

 def updateGreenSlider(self, value):

 self.green_slider.setValue(value)

 self.greenValue(value)

 def updateBlueSpinBox(self, value):

 self.blue_spinbox.setValue(value)

 self.blueValue(value)

 def updateBlueSlider(self, value):

 self.blue_slider.setValue(value)

 self.blueValue(value)

When a valueChanged signal triggers a slot, it uses value to update the

corresponding slider or spin box and then calls a function that will create a new color

from the red, green, or blue values.

We’ll take a look at one example since the others are organized in a similar manner.

If the value of red_slider is changed, the updateRedSpinBox() slot will be called, and

the value of red_spinbox set to value. From there, let’s move to Listing 12-10 to handle

the creation of new colors.

Listing 12-10. Code for methods that create and update a color

rgb_slider.py

 # Create new colors based upon the changes to the RGB

 # values

 def redValue(self, value):

 new_color = qRgb(value,

 self.current_val.green(), self.current_val.blue())

 self.updateColorInfo(new_color)

Chapter 12 Creating Custom Widgets

354

 def greenValue(self, value):

 new_color = qRgb(self.current_val.red(),

 value, self.current_val.blue())

 self.updateColorInfo(new_color)

 def blueValue(self, value):

 new_color = qRgb(self.current_val.red(),

 self.current_val.green(), value)

 self.updateColorInfo(new_color)

 def updateColorInfo(self, color):

 """Update color displayed in image and set the hex

 values accordingly."""

 self.current_val = QColor(color)

 self.color_display.fill(color)

 self.cd_label.setPixmap(QPixmap.fromImage(

 self.color_display))

 self.hex_values_label.setText(

 f"{self.current_val.name()}")

Continuing with red, the redValue() function creates a new qRgb color, using the

new red value and the current_val’s green() and blue() colors. The variable current_

val is an instance of QColor. The QColor class has functions that we can use to access an

image’s RGB (or other color format) values.

The new_color is then passed to updateColorInfo(). Green and blue colors are

handled in a similar fashion. Next, we have to create a QColor from the qRgb value and

store it in current_val. The QImage color_display is updated with fill(), which is

then converted to a QPixmap, and displayed on the cd_label.

The last thing to do is to update the hexadecimal labels using QColor.name().

(Remember that current_val is a QColor object.) This function returns the name of the

color in the format “#RRGGBB”.

 Adding Methods to a Custom Widget

The options for methods that you could create for a custom widget are numerous. One

option is to create methods that allow the user to modify the behavior or appearance of

Chapter 12 Creating Custom Widgets

355

your custom widget. Another option is to use the event handlers to check for keyboard or

mouse events that could be used to interact with your GUI.

The getPixelValue() method in Listing 12-11 is a reimplementation of the

mousePressEvent() event handler. If an image is passed into the RGBSlider constructor, then

_image is not None, and the user can click on points in the image to get their corresponding

pixel values. QColor.pixel() gets a pixel’s RGB values. Then, the value for current_val is

updated in order to use the selected pixel’s red, blue, and green values. These values are then

passed back into the functions that will update the sliders, spin boxes, labels, and QImage.

Listing 12-11. Code for the getPixelValues() method

rgb_slider.py

 def getPixelValues(self, event):

 """The method reimplements the mousePressEvent method.

 To use, set an widget's mousePressEvent equal to

 getPixelValues, like so:

 image_label.mousePressEvent = rgbslider.getPixelValues

 If an _image != None, then the user can select pixels

 in the images, and update the sliders to get view the color,

 and get the rgb and hex values."""

 x = int(event.position().x())

 y = int(event.position().y())

 # valid() returns true if the point selected is a valid

 # coordinate pair within the image

 if self._image.valid(x, y):

 self.current_val = QColor(self._image.pixel(x, y))

 red_val = self.current_val.red()

 green_val = self.current_val.green()

 blue_val = self.current_val.blue()

 self.updateRedSpinBox(red_val)

 self.updateRedSlider(red_val)

 self.updateGreenSpinBox(green_val)

 self.updateGreenSlider(green_val)

 self.updateBlueSpinBox(blue_val)

 self.updateBlueSlider(blue_val)

Chapter 12 Creating Custom Widgets

356

Go ahead and run the script now and see how it operates. Right now, the application

is simply its own small GUI. Let’s see how to use the custom widget class in another

application to utilize the color selecting feature.

 RGB Slider Demo
One reason for creating a custom widget is so that it can be used in other applications.

The following program is a short example of how to import and set up the RGB slider

built in Project 12.1. For this example, an image is displayed in the window alongside the

RGB slider. Users can click on points within the image and see the RGB and hexadecimal

values change in real time.

This short program’s GUI can be seen in Figure 12-2.

Figure 12-2. An example GUI with the custom RGB slider. Image from www.
pixilart.com/

Chapter 12 Creating Custom Widgets

http://www.pixilart.com/
http://www.pixilart.com/

357

 Explanation for the RGB Slider Demo
Be sure to download the image from the images folder in the GitHub repository.

You can use the basic_window.py class from Chapter 1 to get your started with this

program. Begin by importing a few classes, including the RGB slider and the style sheet

from rgb_slider.py, in Listing 12-12.

Listing 12-12. Code that shows an example for using the RGB slider widget

rgb_demo.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QHBoxLayout)

from PyQt6.QtGui import QPixmap, QImage

from PyQt6.QtCore import Qt

from rgb_slider import RGBSlider, style_sheet

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(225, 300)

 self.setWindowTitle("12.2 - Custom Widget Example")

 # Load image

 image = QImage("images/duck_pic.png")

 # Create instance of RGB slider widget

 rgbslider = RGBSlider(image)

 image_label = QLabel()

 image_label.setAlignment(Qt.AlignmentFlag.AlignTop)

 image_label.setPixmap(QPixmap().fromImage(image))

 # Reimplement the label's mousePressEvent

 image_label.mousePressEvent = rgbslider.getPixelValues

Chapter 12 Creating Custom Widgets

358

 h_box = QHBoxLayout()

 h_box.addWidget(rgbslider)

 h_box.addWidget(image_label)

 self.setLayout(h_box)

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = MainWindow()

 sys.exit(app.exec())

In the MainWindow class, set up the window in initializeUI(), load an image, and

create an instance of the RGB slider. The widgets are then arranged in the window.

For this application, we are still creating the image as an instance of QImage and then

converting it to a QPixmap. QImage is used so that we have access to the image’s pixel

information.

To use the getPixelValues() method in the RGBSlider class, we’ll need to

reimplement the QLabel object’s mouse event handler. When the user clicks on a pixel

in the image, the x and y coordinates from the event are used to update the values in the

RGB slider widget using the getPixelValues() method.

If you only want to use the slider to get different RGB or hexadecimal values, then the

application is finished. But you could continue to add other functionalities to the RGB

slider to use in your own projects.

 Summary
Not every problem can be solved by the widgets that Qt provides. In situations where

ingenuity is needed, PyQt is great because it allows developers to design, build,

and customize their own widgets. This can be handled in a variety of ways, perhaps

by building a new widget from preexisting widgets or by creating completely new

widgets from scratch. From there, a new widget can be seamlessly imported into other

applications.

In Chapter 13, you will find out how to create modern-looking GUIs using Qt Quick.

Chapter 12 Creating Custom Widgets

359
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_13

CHAPTER 13

Working with Qt Quick
Graphical user interfaces nowadays can be found on a multitude of devices,

including desktop computers, mobile devices, and small touchscreens controlled by

microcontrollers. While UIs are designed to fit the functional and technical needs of

each device, the demands of these platforms have inspired The Qt Company to continue

to build a set of scalable, polished, dynamic, and visually stunning tools for building user

interfaces.

In this chapter, you will

• Get an overview of the QtQuick and QtQml modules and the QML

programming language

• Learn how to write and run simple applications using QML and PyQt

• Find out how to build QML components and use them in other

.qml files

• Utilize different methods for arranging QtQuick elements using QML

• Experiment with different QML types to create applications

• Use simple transformations to animate objects

This chapter’s aim is to provide an overview of QtQuick and Qt’s QML language. If

your aim is to continue using QtWidgets, then this chapter may not provide information

that is beneficial at this current moment in your development stage. However, for new

PyQt developers, the hope is that this chapter can provide some useful ideas and insights

about what the latest versions of Qt and PyQt have to offer.

https://doi.org/10.1007/978-1-4842-7999-1_13

360

Note For those readers using macOS, you may have issues running the
applications in this chapter if you are using the Z shell, also known as zsh. The
bash shell used to be the default on macOS until recently. If you run into problems
due to zsh, you can switch to the bash shell by entering chsh -s /bin/bash/
in the command line. To switch back to zsh when you are finished, you will need to
enter the command chsh -s /bin/zsh. Just be aware that when you do switch
between shells, you will either need to install PyQt6 from PyPI or edit the paths in
bash to locate PyQt6 and your other Python packages.

 Outlining QtQuick and QML
While desktop applications are still a large part of Qt, a considerable amount of work has

gone into creating a toolkit in Qt 6 that resembles the more fluid, dynamic, and animated

UIs of mobile and embedded devices. As you follow along in this chapter (or explore

the links within this chapter that lead to even more information about creating GUIs

with QtQuick), you’ll notice a number of similarities with QtWidgets. You’ll notice visual

elements such as buttons and combo boxes. You’ll see windows, dialogs, and menus.

Layouts, among other methods, are also used in QtQuick to arrange elements. We’ll even

take a brief look at animating objects.

What then is QtQuick? Before answering that question, let’s first try and clear up

some confusion that might occur early on. To build applications, we’ll need to clarify

three important terms: QML, QtQuick, and QtQml.

When using QtQuick, you’ll also hear about the Qt Modeling Language (QML). QML

is the declarative, markup language specifically designed for user interfaces that QtQuick

is built upon. The language is used to create highly fluid and dynamic interfaces and

visual effects similar to those seen on mobile devices. A QML file, also referred to as a

document,1 is comprised of a declarative, hierarchical tree of elements and has support

for various JavaScript expressions.2 A QML document can either create a window for an

1 More information about QML documents is found at https://doc.qt.io/qt-6/qtqml-
documents- topic.html.
2 For information about JavaScript expressions in QML, refer to https://doc.qt.io/qt-6/qtqml-
javascript- expressions.html.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtqml-documents-topic.html
https://doc.qt.io/qt-6/qtqml-documents-topic.html
https://doc.qt.io/qt-6/qtqml-javascript-expressions.html
https://doc.qt.io/qt-6/qtqml-javascript-expressions.html

361

application or build a reusable element called a component. In essence, QML is used to

build the UI objects and specify how they relate to one another.

With the relationships built, the QtQuick module is used to describe the look and

behaviors of a GUI’s elements. It is worth noting that, similar to what we have seen in

QtWidgets, QtQuick also contains the classes for the visual canvas, graphical elements,

layouts, data models and views, animations, graphics, and so much more!

In addition to QtQuick, we’ll leverage the QtQml module to provide a

QQmlEngine object to access the QML content that we create. An engine, along with

a QQmlContext object for passing data to the QML components, is used to expose

Python to the QML code that we create. Luckily, QtQml provides a convenience

class, QQmlApplicationEngine, that combines the engine and the context. We’ll use

QQmlApplicationEngine to load our QML files.

By exposing Python to the QML components, we can use QML to write the front-end

code and use Python and PyQt to build the back-end logic.

Note a quick note about the structure of this chapter. To focus on efficiency,
we’ll first cover how to create a basic QML document, followed by adding simple
visual elements such as text and images to get you comfortable. From there, we’ll
discuss how to organize elements in the guI. The next step is to find out how to
create a QML window, complete with a menu bar and an introduction to signals
and slots in QML. Lastly, we’ll take a brief glimpse at animating elements.

If after finishing this chapter you find that QtQuick and QML interest you, or if you have

any questions along the way, the following links can provide more context and guidance:

• A brief tutorial for QML: https://doc.qt.io/qt- 6/qml-tutorial.html

• An online QML book provided by The Qt Company: www.qt.io/

product/qt6/qml- book

• Information for working with PyQt and QML: www.

riverbankcomputing.com/static/Docs/PyQt6/qml.html

• Information about Qt Quick in Qt 6: https://doc.qt.io/qt- 6/

qtquick- index.html

Before creating any code, let’s take a quick look at some common elements and

properties we’ll be using to create QtQuick applications.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qml-tutorial.html
https://www.qt.io/product/qt6/qml-book
https://www.qt.io/product/qt6/qml-book
https://www.riverbankcomputing.com/static/Docs/PyQt6/qml.html
https://www.riverbankcomputing.com/static/Docs/PyQt6/qml.html
https://doc.qt.io/qt-6/qtquick-index.html
https://doc.qt.io/qt-6/qtquick-index.html

362

 Elements in QtQuick
Elements, also called types, are the built-in building blocks used to create GUIs in

QtQuick. The term “elements” encapsulates both visual and nonvisual types. Visual

elements have geometry and can be arranged in the GUI, while nonvisual elements are

typically used to control the visual elements.

To create an instance of a type in QML, simply call the element followed by a pair of

braces. An example of creating a Rectangle element is shown in the following line:

Rectangle {...}

Object types will always begin with a capital letter. Each element also has a number

of particular properties, such as width, height, color, and text, that are used to specify

different aspects of the element. Properties can also be used to position elements, specify

geometric transformations, and handle state changes. These properties are defined

between the braces.

Table 13-1 describes some common and interesting elements found in QtQuick.

A full list of QML types is found at https://doc.qt.io/qt- 6/qmltypes.html.

Table 13-1. Selection of common QtQuick types

Element Description

Item The base element from which all visual elements derive. Does not itself create a

visual element. Instead, Item defines the properties for other types. Can also be used

as a container for other elements

Rectangle Inherits Item and adds visual properties, including color, border, and radius

Image Displays images. Provides the source property to specify the image urL and

fillMode for controlling resizing behavior

Text Displays text. Includes text, font, style, and alignment properties

MouseArea nonvisual type that is needed to capture mouse events. MouseArea also includes

properties such as width and height

Flickable nonvisual type that acts as a draggable and flickable surface for its children. Perfect

for showing large numbers of child objects on a scrollable surface

Component used along with the Loader type to dynamically create and load components within

a component document. Components are typically created and instantiated using

separate QML files

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qmltypes.html

363

Let’s take a look at how to use a few of the elements in Table 13-1 to create a QML

document with a .qml extension in the following section.

 Introduction to the QML Language and Syntax
One of the best ways to get started understanding a new language is to jump right into

some code. In this section, we’ll take a look at a QML document and break apart the

tree-like structure of QML. If you have never coded in JavaScript or any other declarative

language, there is no need to worry. There is a very simple pattern to writing QML code.

By creating the simple GUI seen in Figure 13-1, you’ll have learned some very

important concepts, including how to

• Import QML object types into a document (it is also possible to

import JavaScript resources)

• Create QML parent and children elements

• Define properties for different kinds of elements

• Manually arrange elements using the visual canvas’s

coordinate system

• Create a simple, reusable component

• Understand simple QML syntax concepts

Figure 13-1. Custom QtQuick component with text

After working with QtWidgets, you may notice that there is no title in the window’s

title bar. This is because this example does not actually create a window; instead, we

are creating a QML component with Rectangle as the parent object. Not only does

ChaPTer 13 WOrkIng WITh QT QuICk

364

Rectangle not have a title property, but by creating a component, we could also

instantiate this object in another QML document if we wanted to do so. You’ll see an

example of this in the “Layout Handling in QML” section.

 Explanation for QML Language and Syntax

The first step is to import the object types in Listing 13-1. If you have ever used QtQuick

before, then you’ll know that import statements in Qt 5 also needed a version number.

Thankfully, this is no longer necessary in Qt 6,3 and the version of QtQuick will match

your version of PyQt6.

Single-line comments in QML use double forward slashes, //. Multi-line comments

start with /* and end with */.

To begin, create a new file with the extension .qml.

Listing 13-1. Simple QML document that demonstrates basic syntax principles

qml_intro.qml

// Import necessary modules

import QtQuick

Rectangle {

 id: rect

 width: 155; height: 80

 color: "skyblue"

 Text {

 text: "Small Component"

 x: 10; y: 30

 font.pixelSize: 16

 font.weight: Font.DemiBold

 color: "black"

 }

}

3 To find out more about QtQuick versions in Qt 5 or Qt 6, consult https://doc.qt.io/qt-6/
qtquickcontrols-index.html#versions. The QtQuick versions will be the same even though we
are using PyQt.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquickcontrols-index.html#versions
https://doc.qt.io/qt-6/qtquickcontrols-index.html#versions

365

A QML document contains the hierarchy of objects, where each object can have

an id and a name, properties, methods, and even signals and signal handlers. The root

object is the top-level item in the document.

For this example, there are two objects. The first is the Rectangle element, which

acts as the parent for the second, the Text element. One of the benefits of using braces as

well as indentation in QML is that you can comprehend the hierarchy of the objects just

by looking at the code. Creating parent-child relationships in QML is simply a matter of

instantiating an object within the braces of a parent object.

But what happens if you want a child to access the values of other elements other

than the parent? To find out, let’s have a look at how to specify property values.

Defining Properties of an Element

When a value is assigned to a property in QML, the assignment is denoted with a colon,

:, where the left side of the colon is the property name and the right side is its value. For

example, the width property of the Rectangle is equal to 155.

You’ll notice that the first attribute defined for Rectangle is id, which is an identifier

that can be used throughout the QML document to interact with that object. Here,

the Rectangle element is identified as rect. Always use lowercase for the first letter of

identifiers to avoid confusion between QtQuick elements and other components.

For Rectangle, let’s specify its width and height and give it a color other than

the default white. Properties that are defined on the same line are separated using a

semicolon. The Text element’s text, font, and color properties are set. Just like in

QtWidgets, you can also style text using HTML tags.

The Coordinate System

The visual canvas in QtQuick is a two-dimensional surface for arranging objects. The

top-left pixel of the window is (0, 0). While the canvas is 2D, it also has z-ordering to

handle the ordering of objects when they overlap.

What is interesting is that child elements are relative to their parents, meaning that a

child inherits the coordinate system of the parent and is arranged based on its parent’s

top-left corner. An example of this can be found at https://doc.qt.io/qt- 6/qtquick-

visualcanvas-coordinates.html.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquick-visualcanvas-coordinates.html
https://doc.qt.io/qt-6/qtquick-visualcanvas-coordinates.html

366

There are a variety of ways to organize elements in the GUI window, many of

which will be discussed in the “Layout Handling in QML” section. For this example, we

can manually position objects in the window by specifying the x and y values for the

Text object.

Tip If you downloaded Qt Creator back in Chapter 8, then you’ll be able to
visualize the document at this point. You could either open the file in Qt Creator,
or you could locate the qml executable that is included in the Qt directory on your
computer. next, run the following command in the shell:

$ <Qt_dir>/Qt/<path-to-qml>/qml qml_intro.qml.

Your <path-to-qml> may be similar to 6.0.0/clang_64/bin, where 6.0.0
denotes the Qt version. (Your path and version may also be different.) You can
replace qml_intro.qml with any QML document you want to run.

Using what we have learned, let’s find out how to continue adding more features to

QtQuick UIs and learn how to present documents using Python in the following sections.

 Building and Running QML Components
This section is broken down into four major parts:

 1. Creating and visualizing QML components using QQuickView

 2. Building reusable components

 3. Positioning elements in QML

 4. Creating and visualizing QtQuick windows using

QQmlApplicationEngine

Each one of the examples uses one of two classes to load the QML files. The first is

QQuickView, which is a convenience class that loads a QML file and provides a window

to display QML scenes. QQuickView works for visualizing components.

ChaPTer 13 WOrkIng WITh QT QuICk

367

But what should you do if you want to create a QtQuick application with a window,

a menu bar, and other UI elements? That is where QQmlApplicationEngine comes into

play. We’ll discover in the “Building and Loading QML Windows” section how to build

applications with windows.

Along the way, you’ll also find out how to

• Add images to your QtQuick applications

• Position objects using anchors

• Enable mouse handling with MouseArea

• Find out how to use JavaScript expressions

• Use QtQuick Controls for creating windows and adding additional

components such as buttons and check boxes to GUIs

• See how to use signals and signal handlers in QML

For all of the examples in this chapter, we’ll need at least two files: one .qml

document for designing the UI and one .py script that handles loading the QML file and

possibly the back-end functionality. More complex applications could have multiple

components that are called in a main.qml file.

 Creating and Loading QML Components
We’ll need to create the following two files to build the GUI seen in Figure 13-2:

 1. images_and_text.qml – A QML component composed of images

and text

 2. quick_loader.py – A Python script for quickly loading general

QML components

ChaPTer 13 WOrkIng WITh QT QuICk

368

Figure 13-2. QtQuick component containing images and text

Make sure to download the images folder from the GitHub repository before getting

started.

 Explanation for Creating QML Components

First, create a new QML document. The Item element in Listing 13-2 serves as the root

for this component. The id identifier has been assigned as such. The width and height

properties are then specified. Since Item types do not display visual content, we’ll need

to assign the object a child element, perhaps a Rectangle or an Image.

ChaPTer 13 WOrkIng WITh QT QuICk

369

Listing 13-2. Creating a QML document with images and text

images_and_text.qml

// Import necessary modules

import QtQuick

Item {

 id: root

 width: 340; height: 420

 // Create an Image that will serve as the background

 Image {

 anchors.fill: root

 source: "images/background.jpg"

 fillMode: Image.PreserveAspectCrop

 }

 // Create a container Rectangle to hold text and images

 Rectangle {

 id: container

 width: 300; height: 120

 y: 40 // Vertical offset

 /* Comment out the following line and uncomment the

 line after to view the Rectangle */

 color: "transparent"

 //color: "lightgrey"

 anchors.horizontalCenter: root.horizontalCenter

 anchors.topMargin: 40

 Image {

 id: image

 anchors.centerIn: container

 source: "images/qtquick_text.png"

 sourceSize.width: container.width

 sourceSize.height: container.height

 }

ChaPTer 13 WOrkIng WITh QT QuICk

370

 Text {

 text: "It's amazing!"

 anchors {

 top: image.bottom

 horizontalCenter: image.horizontalCenter

 }

 font.pixelSize: 24

 font.weight: Font.DemiBold

 color: "#3F5674"

 }

 }

}

By adding an Image element to the Item as a child, the image can easily be set as the

component’s background. QtQuick makes this process effortless using anchors.

Positioning Elements with Anchors

Anchors are properties that allow you to arrange objects in a GUI by specifying the

relation of one element with respect to its parent or sibling objects. Imagine an object

having lines along its left, right, top, and bottom sides as well as lines going vertically

and horizontally through its middle. We can use the anchors to define the relationship

between the elements and those lines.

The following list describes commonly used anchor properties:

• anchors.fill – Convenience property for one item to have the same

geometry as another, thereby filling up the space of the other element

(while also preserving aspect ratio and cropping)

• anchors.centerIn – Positions an object in the center of

another object

• anchors.left, anchors.right – Positions an object to the left or right

of another object

• anchors.top, anchors.bottom – Positions an object on the top or

bottom of another object

• anchors.verticalCenter, anchors.horizontalCenter – Arranges an

object to the vertical or horizontal center of an another object

ChaPTer 13 WOrkIng WITh QT QuICk

371

There are also ways to add margins between the objects using anchors.

With the first Image type created in Listing 13-2, anchors.fill: root binds the

Image.anchors property to the root object’s size.

A binding specifies the value of a property in QML and is denoted with a colon, :,

similar to assigning a regular value. The difference is that binding creates a dependency

between the property and the other object. Bindings in QML can be used to access built-

in properties, make function calls, and even use built-in JavaScript objects like Math.

More information about anchors can be found at https://doc.qt.io/qt- 6/

qtquick- positioning- anchors.html.

Adding Images in QtQuick

The source property of Image is used to specify the path to a desired image file. The

fillMode property defines what happens to the image when its size does not match

that of the item. The value PreserveAspectCrop preserves the image’s aspect ratio

while also cropping the image, if necessary. Other fillMode values include Stretch,

PreserveAspectFit, Tile, and Pad (which does not transform the image).

The Rectangle type serves as a container for the remaining Image and Text objects.

The string "transparent" can be assigned to the color property. This is a neat little trick

to remove the background if you are using PNG images with transparent backgrounds. If

you would like to see how the Image and Text types fit within the container object, you

can switch the comments on the color lines.

The sourceSize can be used to force an image to scale down or up to a certain size.

Here, the size of the qtquick_text.png image is forced to remain its original size, but

centered in container. This prevents distortion of the text.

One thing to note is that you can group properties. You can see this in the Text

object. Grouping the properties could have also been done with the font and

sourceSize properties in this example.

With the UI built, we now need a way to load the QML document.

 Explanation for Loading QML Components

QQuickView provides a window for displaying a QtQuick user interface where all you

need to do is to pass the URL of the .qml file to QQuickView.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquick-positioning-anchors.html
https://doc.qt.io/qt-6/qtquick-positioning-anchors.html

372

In order to make a general Python script that we can pass QML files to as arguments

when running the application, we’ll also use the Python argparse module4 in

Listing 13-3.

To begin, let’s import a few PyQt6 classes into a new Python script. Since we are not

using QtWidgets, there’s no need to import QApplication. Instead, QGuiApplication is

used for GUI-related applications that are not using widgets.

Listing 13-3. Code for loading a general QML component using QQuickView

quick_loader.py

Import necessary modules

import sys, argparse

from PyQt6.QtCore import QUrl

from PyQt6.QtGui import QGuiApplication

from PyQt6.QtQuick import QQuickView

def parseCommandLine():

 """Use argparse to parse the command line for specifying

 a path to a QML file."""

 parser = argparse.ArgumentParser()

 parser.add_argument("-f", "--file", type=str,

 help="A path to a .qml file to be the source.",

 required=True)

 args = vars(parser.parse_args())

 return args

class MainView(QQuickView):

 def __init__(self):

 """ Constructor for loading QML files """

 super().__init__()

 self.setSource(QUrl(args["file"]))

 # Get the Status enum's value and check for an error

 if self.status().name == "Error":

 sys.exit(1)

4 More information about argparse can be found at https://docs.python.org/3.9/howto/
argparse.html.

ChaPTer 13 WOrkIng WITh QT QuICk

https://docs.python.org/3.9/howto/argparse.html
https://docs.python.org/3.9/howto/argparse.html

373

 else:

 self.show()

if __name__ == "__main__":

 args = parseCommandLine() # Return command line arguments

 app = QGuiApplication(sys.argv)

 view = MainView()

 sys.exit(app.exec())

The QQuickView method setSource() is used to load the QML file. If no errors are

found, then show() is used to display the GUI.

You can load either Listing 13-1 or 13-2 and visualize the components. To load a file,

run the following command in your shell:

$ python3 quick_loader.py -f images_and_text.qml

Windows users can use python instead of python3.

To load Listing 13-1, run:

$ python3 quick_loader.py -f qml_intro.qml

We’ve just seen how to build a simple component. Now, let’s start to find out how to

make components that are reusable and interactive.

 Creating Reusable Components
Being able to create custom and reusable components is an essential part of GUI

development. This holds true even in QtQuick. Figure 13-3 displays a simple custom

Rectangle that we’re going to build to demonstrate how to use the mouse event

handlers.

Figure 13-3. Reusable QtQuick component that changes color when clicked

ChaPTer 13 WOrkIng WITh QT QuICk

374

This is only a taste of the kind of components that you could build. Components can

consist of classic UI elements, data views, animations, and more.

 Explanation for Creating Custom Components

Listing 13-4 is a new QML document that contains a Rectangle type with a single

Text child. What sets this component apart from Listing 13-1 is the addition of the

MouseArea type.

For this example, create a file called ColorRect.qml.

Tip Be sure to use camelCasing when naming components that you plan
to reuse.

Listing 13-4. Code for the ColorRect component

ColorRect.qml

import QtQuick

Rectangle {

 id: root

 width: 80; height: 80

 color: "#1FC6DE" // Cyan-like color

 border.color: "#000000"

 border.width: 4

 radius: 5

 Text {

 text: root.color

 anchors.centerIn: root

 }

 // Click on Rectangle to change the color

 MouseArea {

 anchors.fill: parent

 onClicked: {

 color = '#' + (0x1000000 + Math.random()

 * 0xffffff).toString(16).substr(1, 6);

ChaPTer 13 WOrkIng WITh QT QuICk

375

 // Uncomment the following line for Listing 13-9

 //root.clicked()

 }

 }

}

The current color of the Rectangle is displayed on Text by binding the text property

to root.color.

 Making an Element Interactive with Mouse Handling

Support for various input devices, including keyboard, mouse, touch, and stylus devices,

is possible in QtQuick.

A MouseArea is a nonvisual item that is used in conjunction with visual types.

Clicking on an item that also includes a MouseArea object could be used to trigger

signals, check the location of the cursor, or drag and drop items if drag and drop is

enabled.

The anchors.fill property is used so that the user can click anywhere on the parent

object (which is the Rectangle). If the Rectangle is clicked, then the clicked signal

is emitted, and the onClicked signal handler is called. (Signal handlers are methods

that handle signals. Their names are simply the signal with on added to the front and

camelCased.) We’ll explore signals a bit more in the “Signals and Signal Handlers”

subsection.

In onClicked, a JavaScript expression is used to select a random color and convert it

to a hexadecimal string that represents a new color. The color value is used to update the

value of the ColorRect.

Using Listing 13-3 (quick_loader.py), you can run view the ColorRect component

by running the following line in the shell:

$ python3 quick_loader.py -f ColorRect.qml

In the following section, ColorRect will be used to build a few example applications

that demonstrate how to organize elements in QtQuick.

ChaPTer 13 WOrkIng WITh QT QuICk

376

 Layout Handling in QML
Organizing visual elements in a GUI is important for creating cohesion. Objects in

QtQuick can be arranged in a few different fashions. In this section, we’ll discuss four of

them. A few example documents will also be created to help visualize how to use them

in code.

There are a few different approaches for arranging items in QML. The following list

talks about each one:

• Manual positioning can be used to explicitly specify the x and y

coordinates of QtQuick types. This method is extremely efficient

for GUIs that are not dynamic. This method was demonstrated in

Listing 13-1.

• Anchoring uses the boundaries and relative positions of parent and

sibling elements to arrange objects. This topic was covered back in

the “Positioning Elements with Anchors” subsection.

• Positioners are containers that are used to arrange children items in

columns, rows, or grids. The “Using Positioners to Position Elements”

section gives an overview of positioners.

• Layout managers are used to organize items in a UI. The main

difference between layout managers and positioners is that layouts

also handle resizing. Layouts can be imported into a QML document

by using import QtQuick.Layouts. More information about layout

managers in QtQuick can be found at https://doc.qt.io/qt- 6/

qtquicklayouts- index.html.

 Using Positioners to Position Elements

Positioners share similar behavior with layout managers. Like layout managers,

positioners are used to organize items in a specific form like a row or column. Unlike

layout managers, however, positioners act like containers for the widgets that become

their children and don’t manage the sizes of their children items.

Table 13-2 lists the four commonly used positioners.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquicklayouts-index.html
https://doc.qt.io/qt-6/qtquicklayouts-index.html

377

Table 13-2. Four of the standard positioner types

Positioner Description

Column Positions children elements in a single column

Row Positions children elements in a single row

Grid Positions children elements in a grid

Flow Positions children elements side by side, and children can be wrapped top to bottom

or left to right

In addition, positioners contain a few properties for managing the spacing between

elements, applying padding, and specifying the direction for laying out the items.

More information about positioners is found at https://doc.qt.io/qt- 6/qtquick-

positioning-layouts.html.

Explanation for Using Column and Grid Positioners

A Column positioner is used in Figure 13-4 to arrange a few ColorRect components from

Listing 13-4, (ColorRect.qml). The elements are stacked on top of each other and the

spacing between each ColorRect is set using the spacing property.

Figure 13-4. Elements arranged in a Column positioner

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquick-positioning-layouts.html
https://doc.qt.io/qt-6/qtquick-positioning-layouts.html

378

Listing 13-5 creates a simple Rectangle parent in a QML document that contains

three ColorRect instances arranged in a Column positioner.

Listing 13-5. Code for the Column positioner example

columns.qml

import QtQuick

Rectangle {

 width: 200; height: 300

 color: "grey"

 Column {

 id: column

 anchors.centerIn: parent

 spacing: 6

 // Add custom components to Column

 ColorRect { }

 ColorRect { }

 ColorRect { color: "pink"}

 }

}

Also, if you look at the third ColorRect instance, you’ll notice how properties of

components can still be modified when instantiating them. Try switching Column to Row

or Flow in Listing 13-5 and take a look at the difference in the GUI.

Figure 13-5 is an example of the Grid positioner.

ChaPTer 13 WOrkIng WITh QT QuICk

379

Figure 13-5. Elements arranged in a Grid positioner

Listing 13-6 differs only slightly from Listing 13-5. Notice how for the Grid positioner

you’ll need to specify the number of rows and columns in the grid.

Listing 13-6. Code for the Grid positioner example

grids.qml

import QtQuick

Rectangle {

 width: 200; height: 200

 color: "grey"

 Grid {

 id: grid

 rows: 2; columns: 2

 anchors.centerIn: parent

 spacing: 6

ChaPTer 13 WOrkIng WITh QT QuICk

380

 // Add custom components to Column

 ColorRect { }

 ColorRect { }

 ColorRect { radius: 20 }

 ColorRect { }

 }

}

Even though these two examples use Rectangle types to illustrate how to use

positioners, they are more efficiently used when arranging buttons, dials, or other UI

elements.

In the following section, you’ll get closer to creating well-rounded classic desktop

applications by finding out how to create menu bars and display dialogs in QtQuick.

 Building and Loading QML Windows
While QQuickView is useful for displaying components, the QQmlApplicationEngine

class is a more convenient way to load a single QML document where the root object is

a window. What this means is that instead of using Rectangle or Item types as the root,

we’ll be using the ApplicationWindow control. Doing so will provide us with additional

tools, such as a menu bar and toolbars.

Note QQuickView does not support using window types like
ApplicationWindow as a root item. To display a scene in a window, you’ll need
to use QQmlApplicationEngine.

For this simple application, we’ll create a window that displays local images. The

images can be selected through a FileDialog instance that is created when selecting the

Open menu option. This is shown in Figure 13-6.

ChaPTer 13 WOrkIng WITh QT QuICk

381

Figure 13-6. An Image Viewer GUI created with QtQuick

Previous QML documents have only imported QtQuick. In order to include common

GUI elements in a QtQuick application, we’ll need to import a new class.

 QtQuick Controls

Controls are similar to the widgets in QtWidgets. They are the buttons, check boxes,

sliders, and other graphical UI elements we have come to expect for interacting with

applications.

Table 13-3 lists only a portion of the controls that are available in QtQuick.

ChaPTer 13 WOrkIng WITh QT QuICk

382

Table 13-3. Selection of common QtQuick.Controls types

Controls Description

Action Describes the actions that can be assigned to menu items and toolbars

ApplicationWindow Window with additional functionality for adding a menu bar, header, and

footer

Button Push button that can be clicked by the user to perform an action

CheckBox Check button that can be toggled on and off

ComboBox Presents a drop-down list for selecting options

Dial Circular dial that can be rotated to select a value

Dialog Pop-up dialog box with standard buttons and title

DialogButtonBox a button box that is used for specifying buttons in a Dialog

Frame Provides a visual frame for organizing other controls

GroupBox Provides a visual frame with a title for organizing other controls

MenuBar Creates a menu bar in a window

RadioButton radio buttons that are autoexclusive and can be toggled on and off

Slider used for selecting a value using a sliding handle on a track

TabBar Creates a tab bar for switching between different views

Tumbler Wheel that can be spun to select values

For a full list of the Controls types, you can check out https://doc.qt.io/qt- 6/

qtquick- controls2- qmlmodule.html.

 Explanation for Creating QML Windows

For this desktop application, we’ll be using a few of the tools that we have used before for

creating windowed applications, namely, a menu bar, actions for the menu items, and

dialogs for loading image files to be displayed in the GUI’s window.

To have access to these tools, we’ll need to import some new QtQuick classes into

a new QML document like in Listing 13-7. Controls gives us access to the UI elements,

while Dialogs is used to create the FileDialog.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-6/qtquick-controls2-qmlmodule.html
https://doc.qt.io/qt-6/qtquick-controls2-qmlmodule.html

383

Listing 13-7. Creating the QtQuick image viewer GUI to illustrate how to use

windows and controls

windows_and_controls.qml

// Import necessary modules

import QtQuick

import QtQuick.Controls

import QtQuick.Dialogs

ApplicationWindow {

 title: "QtQuick Image Viewer"

 width: 800; height: 500

 visible: true

 // Create the menu bar and its actions

 menuBar: MenuBar {

 Menu {

 title: "&File"

 Action {

 text: "&Open"

 onTriggered: openImage()

 }

 MenuSeparator {}

 Action {

 text: "&Quit"

 onTriggered: Qt.quit()}

 }

 }

 // Define the signal for opening images

 signal openImage()

 // Define the signal handler for opening images

 onOpenImage: {

 fileDialog.open()

 }

ChaPTer 13 WOrkIng WITh QT QuICk

384

 // Define a FileDialog for selecting local images

 FileDialog {

 id: fileDialog

 title: "Choose an image file"

 nameFilters: ["Image files (*.png *.jpg)"]

 onAccepted: {

 // Update displayed image

 image.source = fileDialog.selectedFile

 }

 onRejected: {

 fileDialog.close()

 }

 }

 /* Create a container Rectangle for the image

 in order to add margins around the image’s edges */

 Rectangle {

 id: container

 anchors {

 fill: parent

 margins: 10

 }

 Image {

 id: image

 anchors.fill: container

 source: "images/open_image.png"

 fillMode: Image.PreserveAspectFit

 }

 }

}

The ApplicationWindow is the root object of the application and will be loaded in the

next section with QQmlApplicationEngine. ApplicationWindow also includes the title

property. It is most important that you do not forget to include the visible: true line

when using QQmlApplicationEngine. If you forget this property, then your window will

remain hidden since, by default, an ApplicationWindow is not visible.

ChaPTer 13 WOrkIng WITh QT QuICk

385

An Image element is used in the ApplicationWindow to display the selected image

to the user. While an Image can be directly placed in the window, using the anchors.

margins property of Rectangle allows for a subtle border to surround the image.

Creating a Menu Bar

The MenuBar control is used to create the window’s menu bar. Then Menu is used to

create the File menu, and finally Action controls are added to the File menu along with a

MenuSeparator control to separate the Open and Quit actions.

Signals and Signal Handlers

The controls in QtQuick.Controls, just like widgets, communicate using signals and

slots, referred to as signal handlers in QtQuick. It is easy to figure out which signals are

connected to which signal handlers by their names. Signal handlers have an additional

on tacked onto the front and are camelCased. For example, the Button control has the

clicked signal that triggers the onClicked signal handler whenever the button is clicked.

Take a look at the actions in menuBar. To create a custom signal in a QML type, we

need to use the signal keyword. Here, we create a new signal called openImage that has

no parameters.

For this example, the ApplicationWindow control’s openImage signal is emitted

whenever the Open menu item is triggered. This then connects to the onOpenImage

signal handler where a fileDialog instance is opened. Just so you know, the

onTriggered signal handler could be directly connected to fileDialog.open().

The Quit menu item closes the entire application using Qt.quit().

Using FileDialog to Open Files

Dialogs are used either to gather or to present information to a user. For this example, a

FileDialog opens so that the user can select .png or .jpg image files.

The dialog’s lower right corner contains two buttons: OK and Cancel. If the user

clicks OK, then the accepted signal is handled by onAccepted. This will update the

image.source URL and the image using the value of fileDialog.selectedFile.

Otherwise, the rejected signal from the Cancel button will connect to onRejected and

close the dialog.

ChaPTer 13 WOrkIng WITh QT QuICk

386

 Explanation for Loading QML Windows

Similar to Listing 13-3, Listing 13-8 is a Python script for loading general

QML documents. The difference is that Listing 13-8 loads the files using

QQmlApplicationEngine. This means you can only pass as arguments the path of QML

documents where the top-level item is a window, such as ApplicationWindow.

We’ll start by importing classes from PyQt6 into a new Python script, including

QQmlApplicationEngine from the QtQml module.

Listing 13-8. Code for loading a general QML window using

QQmlApplicationEngine

qml_loader.py

Import necessary modules

import sys, argparse

from PyQt6.QtCore import Qt, QUrl

from PyQt6.QtGui import QGuiApplication

from PyQt6.QtQml import QQmlApplicationEngine

def parseCommandLine():

 """Use argparse to parse the command line for specifying

 a path to a QML file."""

 parser = argparse.ArgumentParser()

 parser.add_argument("-f", "--file", type=str,

 help="A path to a .qml file to be the source.",

 required=True)

 args = vars(parser.parse_args())

 return args

class MainView(QQmlApplicationEngine):

 def __init__(self):

 super().__init__()

 # Order matters here; need to check if the object was

 # created before loading the QML file

 self.objectCreated.connect(self.checkIfObjectsCreated,

 Qt.ConnectionType.QueuedConnection)

 self.load(QUrl(args["file"]))

ChaPTer 13 WOrkIng WITh QT QuICk

387

 def checkIfObjectsCreated(self, object, url):

 """Check if QML objects have loaded without errors.

 Otherwise, exit the program."""

 if object is None:

 QGuiApplication.exit(1)

if __name__ == "__main__":

 args = parseCommandLine() # Return command line arguments

 app = QGuiApplication(sys.argv)

 engine = MainView()

 sys.exit(app.exec())

The MainView class inherits QQmlApplicationEngine. Once the QML file is passed to

the QQmlApplicationEngine method load(), the objectCreated signal will be emitted

when all objects have loaded. The enum Qt.ConnectionType.QueuedConnection

ensures that the signal is queued until the event loop can deliver it to the slot. This is

done to make sure we can check for any errors before loading the file.

If loading is successful, the window will open. Otherwise, an error will return an

object with a value of None in the checkIfObjectsCreated() slot.

To load Listing 13-7, run the following command in the shell:

$ python3 qml_loader.py -f windows_and_controls.qml

In the final section, we’ll have a little fun and make some objects spin and change

sizes using transforms.

 Using Transformations to Animate Objects
A transformation is the general term that refers to manipulating the shape, size, and/

or position of a point, line, or geometric shape. Chapter 11 demonstrated how to use

transformations to animate objects in QtWidgets. Now, we’ll start to find out how to

perform some basic transformations in QtQuick.

ChaPTer 13 WOrkIng WITh QT QuICk

388

 Explanation for Simple Transformations
For this first example seen in Figure 13-7, we’ll demonstrate how to use the Item type’s

rotation and scale properties to perform basic transformations on objects.

• rotation – Values passed are in degrees.

• scale – Values less than 1.0 cause the object to render at a smaller

size, while values greater than 1.0 render a larger object.

Figure 13-7. Rotated and scaled objects

Note This example reuses the Colorrect component from Listing 13-4. To get
this example to work, you’ll first need to return to Listing 13-4 and uncomment
the line that says root.clicked(). This will allow the ColorRect to receive
the signals from the applicationWindow in Listing 13-8, creating a clickable
ColorRect component. Be sure to comment out the line again when using
ColorRect.qml for other examples.

ChaPTer 13 WOrkIng WITh QT QuICk

389

First, create a new QML file that imports QtQuick and QtQuick.Controls. The top-

level object in Listing 13-9 is ApplicationWindow. Be sure that when you load this QML

file, you use Listing 13-8. Next, set up the window’s properties and make sure visible is

set to true.

Listing 13-9. Code for transforming objects using mouse clicks

rotate_and_move.qml

import QtQuick

import QtQuick.Controls

ApplicationWindow {

 title: "Simple Transformations"

 width: 300; height: 300

 visible: true

 MouseArea {

 id: windowMouse

 anchors.fill: parent

 onClicked: {

 // Reset the values of the ColorRect objects

 rect1.rotation = 0

 rect2.scale = 1.0

 }

 }

 ColorRect {

 id: rect1

 x: 20; y: 20

 antialiasing: true

 signal clicked

 onClicked:{

 // Rotate the rect 20° when clicked

 rotation += 20

 }

 }

ChaPTer 13 WOrkIng WITh QT QuICk

390

 ColorRect {

 id: rect2;

 x: 200; y: 200

 antialiasing: true

 signal clicked

 onClicked:{

 // Scale the rect when clicked

 scale += .1

 }

 }

}

Next, we’ll create a MouseArea element to handle clicks on the application window.

Since order matters in QML code, creating the MouseArea before the other items ensures

that the window will also receive clicks and not just the ColorRect items.

The two ColorRect objects are arranged in the window manually. A new signal,

clicked, is defined for each of the objects. We can then use the onClicked signal handler

in each of the ColorRect elements to rotate or scale the items using the built-in Item

properties.

Click anywhere in the window to reset the ColorRect values.

To load Listing 13-9, run the following command in the shell:

$ python3 qml_loader.py -f rotate_and_move.qml

Let’s take a look at one final example that demonstrates how to use transformations

and a few other QtQuick classes to animate elements.

 Explanation for Using Transformations to Animate Objects
The GUI in Figure 13-8 builds upon the previous section’s concepts of transformations

and shows how we can create animations using the Behavior QML type. A Behavior

defines the default animation that will occur whenever a particular property value

changes.

ChaPTer 13 WOrkIng WITh QT QuICk

391

Figure 13-8. The spin wheel rotates whenever the mouse clicks in the window

We’ll also see how to leverage JavaScript to create functions for adding randomness

to our application.

Make sure that you have downloaded the images folder from GitHub before starting

this application.

Begin by creating a new QML document. We’ll need to import QtQuick.Controls in

Listing 13-10 so that we have access to the ApplicationWindow control. Be sure to set the

value of visible to true.

Listing 13-10. Code for the spin wheel QtQuick GUI

transforms.qml

import QtQuick

import QtQuick.Controls

ChaPTer 13 WOrkIng WITh QT QuICk

392

ApplicationWindow {

 title: "Spin Wheel Transformations"

 width: 500; height: 500

 visible: true

 /* Get a random number where both the minimum and maximum

 values are inclusive */

 function getRandomIntInclusive(min, max) {

 min = Math.ceil(min);

 max = Math.floor(max);

 return Math.floor(Math.random() *

 (max - min + 1) + min);

 }

 Image {

 id: pointer

 source: "images/pointer.png"

 /* Use the z property to place the pointer above the

 wheel */

 x: parent.width / 2 - width / 2; y: 0; z: 1

 }

 Image {

 id: spinwheel

 anchors.centerIn: parent

 source: "images/spin_wheel.png"

 sourceSize.width: parent.width - 30

 sourceSize.height: parent.height - 30

 // Create a behavior for rotating the spinwheel Image

 Behavior on rotation {

 NumberAnimation {

 duration: getRandomIntInclusive(500, 3000)

 easing.type: Easing.OutSine

 }

 }

ChaPTer 13 WOrkIng WITh QT QuICk

393

 /* Enable mouse handling and define how the image

 rotates when clicked */

 MouseArea {

 anchors.fill: parent

 onClicked: spinwheel.rotation +=

 getRandomIntInclusive(360, 360 * 4)

 }

 }

}

Stand-alone JavaScript functions can be added to QML documents to

add extra functionality. The keyword function denotes the function called

getRandomIntInclusive(), which takes as arguments two integer values that represent

maximum and maximum limits. Using the two values, a random integer is returned.

The function getRandomIntInclusive() will be used on two occasions. The first

time is in the MouseArea item’s signal handler onClicked. The random value returned

will specify the rotation value of spin wheel, adding some realism to the GUI so that no

spin appears to rotate the same amount.

The second time getRandomIntInclusive() is used, we want to describe the

animation Behavior of the rotation. By clicking on the window, the rotation value

of spin wheel will change. The Behavior on rotation line means that whenever the

value of rotation changes, the NumberAnimation will run. The duration property value

denotes how long the rotation will occur, anywhere between half of a second and three

seconds.

Finally, the Easing type and easing.type property denote what kind of easing curve

we want to use. Easing curves provide more realistic animations to objects. To find out

what kinds of Easing curves are available in QtQuick, you should check out https://

doc.qt.io/qt- 5/qml- qtquick- propertyanimation.html#easing- prop.

To load Listing 13-10, run the following command in the shell:

$ python3 qml_loader.py -f transforms.qml

We’ve only begun to scratch the surface of the kinds of fluid transformations and

animations that exist in QtQuick. It is highly recommended that you try and find other

examples and experiment with them.

ChaPTer 13 WOrkIng WITh QT QuICk

https://doc.qt.io/qt-5/qml-qtquick-propertyanimation.html#easing-prop
https://doc.qt.io/qt-5/qml-qtquick-propertyanimation.html#easing-prop

394

 Summary
With the arrival of Qt 6, more emphasis has been put into creating dynamic GUIs that

are cross-platform, scalable, easy to maintain, and designed to get the most out of the

graphics hardware on any platform. QtQuick, the toolkit that is based on Qt’s QML

language, defines a wide variety of amazing graphical tools that are great for desktop,

mobile, and embedded applications.

There is so much more about QtQuick and QML that can be learned. The goal of this

chapter was to provide you with the fundamentals to get you started using QtQuick and,

from there, point you in the right direction with links and other useful information.

In this chapter, we’ve covered how to create a basic window and add QML elements

and controls to an application and even discussed how to create reusable QML

components that you can use in other applications. Those components were then used

to demonstrate other QtQuick concepts like layouts and transformations. We saw how to

load QML files with both QQuickView and QQmlApplicationEngine. The last application

that we built demonstrated how to animate objects using both Behavior types and

JavaScript.

Frankly, a complete guide on QtQuick is necessary to cover and describe all there is

to offer in QML. There is so much content and so many possibilities for using QtQuick

and QML to build GUIs.

In Chapter 14, we’ll return to using QtWidgets and find out how to begin building

applications that interact with and manage SQL databases.

ChaPTer 13 WOrkIng WITh QT QuICk

395
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_14

CHAPTER 14

Introduction to Handling
Databases
Data is fundamental to the ways that modern business, communications, science,

and even our personal lives are changing. The information we create from our online

shopping, social media posts, search engine queries, and location data is collected,

managed, and analyzed and can be used for a number of reasons, including to track

consumer patterns, to train artificial intelligence algorithms, or even to study the

geographic distribution of particular events such as diseases.

In this chapter, we are going to

• Learn about Qt’s Model/View architecture for creating GUIs that

work with data

• Use the QTableView class to build data-handling applications

• See how to work with CSV files in PyQt

• Introduce the QtSql module for creating and managing SQL

relational databases

Before we begin, let’s think a little more about data’s usefulness.

 Thinking About Data
Data analysis, or the process of organizing, modifying, and modeling data, is an

important process, and this chapter will have a look at working with structured data

for GUI development. Data can be stored in many different formats, including textual,

visual, and multimedia.

https://doi.org/10.1007/978-1-4842-7999-1_14

396

In order to analyze data, we need to organize it into structures that we can store and

then access electronically through a computer system. Sometimes, you may only be

working with a small dataset consisting of one or two files. Other times, you may need to

access certain portions of an entire database filled with private information. A database

is an organized collection of multiple datasets.

We generally view the data from files and databases in tables. The rows and columns

of a table typically work best for handling the style of data in data files. If we had a dataset

of employees in a company, each row might represent an individual employee in the

company, while each column depicts the different types of attributes for each employee,

such as their age, salary, and employee ID number.

This chapter will focus on using PyQt’s table classes for displaying and manipulating

data. We will see how to use tables to work with CSV files and to build and interact with

the SQL database management language. Of course, there are also other formats that you

can use for viewing data, namely, lists and trees, should they better fit your application’s

requirements.

 Introduction to Model/View Programming
Qt, and therefore PyQt, needs a system to access, display, and manage data that can be

presented to the user. An older technique used for managing the relationship between

data and its visual representation for user interfaces is the Model-View-Controller

(MVC) software design pattern. MVC divides a program’s logic into three interlinked

components: a model, a view, and a controller.

Qt utilizes a similar design pattern that is based on MVC: the Model/View paradigm.

 The Components of the Model/View Architecture
Model/View programming, similar to MVC, also separates the logic between three

components but combines the view and the controller objects and introduces a new

element – a delegate. A diagram of the architecture can be seen in Figure 14-1.

Chapter 14 IntroduCtIon to handlIng databases

397

Figure 14-1. The Model/View architecture

• Model – The class that communicates with the data source, accessing

the data, and provides a point of connection between the data and

the view and delegate.

• View – The class that is responsible for displaying the data to the

user, either in list, table, or tree formats, and for retrieving items of

data from the model using model indexes. The view also has similar

functionality to the controller in the MVC pattern, which handles the

input from a user’s interaction with items displayed in the view.

• Delegate – The class that is in charge of painting items and providing

editors in the view. The delegate also communicates back to the

model if an item has been edited.

Using the model/view structure has quite a few benefits, specifically being ideal

for developing large-scale applications, giving more flexibility and control over the

appearance and editing of data items, simplifying the framework for displaying data, and

offering the ability to display multiple views of a model at the same time.

Chapter 14 IntroduCtIon to handlIng databases

398

 PyQt’s Model/View Classes
As we saw in Chapter 10, Qt provides a few convenience classes for working with data.

These classes greatly streamline a developer’s work and provide all of the functionality

needed for basic data applications. The following is a quick recap:

• QTreeWidget – Creates a table of items

• QListWidget – Displays a list of items

• QTreeWidget – Provides a hierarchical tree-like structure

What these widgets provide are all the tools necessary to work with data and already

include the view, model, and delegate classes grouped together into single classes.

However, these classes are more focused on item-based interfaces and are less flexible

than working with the Model/View structure. It is also worth noting that each of these

widgets inherits behavior from the abstract item view class, QAbstractItemView, creating

the behavior for selecting items and managing headers.

An abstract class provides the points of connection, referred to as an interface,

between other components, providing the class methods, functionality, and default

implementation of features. They are the basis used for creating other classes. Qt’s

abstract data classes can also be used to create custom models, views, or delegates.

Let’s take a moment to try and understand a little more about the model, view, and

delegate classes that Qt provides:

• Models – All models are based on the QAbstractItemModel class,

defining the interface used by both views and delegates to access

data. They can be used to handle lists, tables, or trees. Data can

take on a number of forms, including Python data structures,

separate classes, files, or databases. Some other model classes are

QStandardItemModel, QFileSystemModel, and SQL-related models.

• Views – All views are based on QAbstractItemView and are used

to display data items from a data source, including QListView,

QTableView, and QTreeView.

• Delegates – The base class is QAbstractItemDelegate, responsible

for drawing items from the model and providing an editor widget for

modifying items. For example, while editing a cell in a table, an editor

widget, such as QLineEdit, is placed directly on top of the item.

Chapter 14 IntroduCtIon to handlIng databases

399

In this section, we are going to create a GUI that demonstrates how to use the

Model/View classes for displaying data in tables. For the GUI in Figure 14-2, data that is

contained in a CSV file will be loaded and displayed in the table. In this example, we will

also take a look at using the QStandardItemModel class, which provides a general model

for storing data. This example will also demonstrate how we can connect a model for

managing data to a view that will display the data.

Figure 14-2. Table created using the Model/View architecture

Communication between the models, views, and delegates is handled by signals

and slots. The model uses signals to notify the view about changes to the data. The view

generates signals that provide information about how a user interacts with items. For

a simple GUI, you may not need to interact with a delegate, but it is important to know

that signals from the delegate are emitted while editing an item in the view. This, in turn,

informs the model and view about the state of the editor widget.

Chapter 14 IntroduCtIon to handlIng databases

400

 Explanation for Introduction to Model/View
Be sure to download the files folder from the GitHub repository before beginning this

program. Listings 14-1 to 14-3 illustrate how to use Model/View programming to display

the contents of a small CSV file in a table view. In Listing 14-1, we’ll use the basic_

window.py script from Chapter 1 to begin setting up the MainWindow class.

Listing 14-1. Code for setting up the MainWindow class in the introductory

Model/View example

model_view_ex.py

Import necessary modules

import sys, csv

from PyQt6.QtWidgets import (QApplication, QWidget,

 QTableView, QAbstractItemView, QVBoxLayout)

from PyQt6.QtGui import (QStandardItemModel, QStandardItem)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 450, 300)

 self.setWindowTitle("Model and View Example")

 self.setupMainWindow()

 self.loadCSVFile()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Tables are great for organizing and displaying various types of textual (and

sometimes graphical) data, such as employee or inventory information.

Chapter 14 IntroduCtIon to handlIng databases

401

We begin by importing classes, including QTableView from the QtWidgets

module and the QStandardItemModel and QStandardItem classes from QtGui.

QStandardItemModel will supply the item-based model we need to work with the data;

QStandardItem creates the items that are used in the model.

 Setting Up the Model, View, and Selection Modes

For the setUpMainWindow() method in Listing 14-2, instances of both the model using

QStandardItemModel and the QTableView class are created. The loadCSVFile() method

for loading the data into the table is handled in Listing 14-3.

Listing 14-2. Code for the setUpMainWindow() method in the introductory

Model/View example

model_view_ex.py

 def setupMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.model = QStandardItemModel()

 table_view = QTableView()

 table_view.setSelectionMode(

 QAbstractItemView.SelectionMode.ExtendedSelection)

 table_view.setModel(self.model)

 # Set initial row and column values

 self.model.setRowCount(3)

 self.model.setColumnCount(4)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(table_view)

 self.setLayout(main_v_box)

There are different ways that users can select items in the table view. The

setSelectionMode() setter, along with the QAbstractItemView.SelectionMode enum,

specifies how the view responds to user selections. The following list describes the

different flags:

• SingleSelection – A user can select only a single item at any given

time. The item that was previously selected will become unselected.

Chapter 14 IntroduCtIon to handlIng databases

402

• ExtendedSelection – Allows for normal selection and also for a user

to select multiple items by pressing the Ctrl key (Cmd on MacOS)

while clicking an item in the view or to select several items using the

Shift key.

• ContiguousSelection – Allows for normal selection and also for a

user to select multiple items by pressing the Shift key.

• MultiSelection – The user can select and deselect multiple items

by clicking and dragging the mouse in the table.

• NoSelection – Selection of items is disabled.

To set up the view to display data from the model, you’ll need to call the setModel()

method and pass the model you instantiated. The model used for this example is

QStandardItemModel.

In Chapter 10 where we looked at QTableWidget, the setRowCount() and

setColumnCount() methods were called on the table widget. When using QTableView,

these methods are not built-in and instead are called on the model like in the following

line of code from Listing 14-2:

 self.model.setRowCount(3)

The table_view widget is added to the QVBoxLayout.

 Working with CSV Files

In initializeUI() from Listing 14-1, the next step is to call loadCSVFile() and read the

contents of the data file. The items are then added to the model to be displayed in the

view. The contents of the file are displayed in Figure 14-3.

Chapter 14 IntroduCtIon to handlIng databases

403

Figure 14-3. Example of the data stored in a CSV file

In the loadCSVFile() method in Listing 14-3, we can see how to read headers and

data from a CSV file. Comma-Separated Values (CSV) is a very common format used for

storing the data of spreadsheets and datasets.

Listing 14-3. Code for the loadCSVFile() method in the introductory Model/

View example

model_view_ex.py

 def loadCSVFile(self):

 """Load header and rows from CSV file."""

 file_name = "files/parts.csv"

 with open(file_name, "r") as csv_f:

 reader = csv.reader(csv_f)

 header_labels = next(reader)

 self.model.setHorizontalHeaderLabels(

 header_labels)

 for i, row in enumerate(csv.reader(csv_f)):

 items = [QStandardItem(item) for item in row]

 self.model.insertRow(i, items)

We’ll open the file, set up the reader object to read the sequences in the file, get the

header labels, and skip to the next line using next(). For this example, we'll assume that

the CSV file will have header labels. The horizontal labels for model are set using the list

of items from the first row in the file, which are stored in header_labels.

Chapter 14 IntroduCtIon to handlIng databases

404

For the remaining rows, we use a list comprehension to read the items for each row

into a list. Items created for QStandardItemModel need to be instances of QStandardItem.

The insertRow() method is used to insert the list of items into the ith row.

With a fundamental understanding of how to create a model and a view, we can

move onto creating GUIs that handle larger datasets. While the rest of this chapter will

focus on SQL-based classes and models, you do not have to use SQL. All you need is

some form of structured data in order to use the Model/View classes.

 Working with SQL Databases in PyQt
Now that we have looked at PyQt’s Model/View architecture and the QTableView class,

let’s see how to use SQL for handling structured data.

 What Is SQL?
Structured Query Language (SQL) is a programming language designed for

communication with databases. The data stored in databases is organized into a set of

tables. The rows of the tables are referred to as records, and the columns are referred

to as fields. Each column can only store a specific kind of information, such as names,

dates, or numbers.

With SQL, we can query the data stored in relational databases – a collection of

data items that have predefined relationships across multiple tables, marked by a unique

identifier known as a foreign key. In a relational database, multiple tables comprise a

schema, more than one schema makes up a database, and those databases are stored

on a server. Relational databases allow for multiple users to handle the data at the

same time. For this reason, accessing a database often requires a user to log in with a

username and password in order to connect to the database.

This section will focus solely on using SQL along with classes from PyQt’s QtSql

module for creating a very basic database management system interface.

Chapter 14 IntroduCtIon to handlIng databases

405

 Working with Database Management Systems

The QtSql module provides drivers for a number of Relational Database Management
Systems (RDBMS), including MySQL, Oracle, Microsoft SQL Server, PostgreSQL, and

SQLite versions 2 and 3. An RDBMS is the software that allows users to interact with

relational databases using SQL. More information about Qt SQL drivers can be found at

https://doc-snapshots.qt.io/qt6-dev/sql-driver.html.

For the following examples, we will be using SQLite 3 since the library already comes

shipped with Python and is included with Qt. SQLite is not a client-server database

engine, so we do not need a database server. In addition, SQLite operates on a single file

and is mainly used for small desktop applications.

 Getting Familiar with SQL Commands

The SQL language already has its own commands for generating queries from databases.

Using these commands, a user can perform a number of different actions for interacting

with database tables. For example, the SQL SELECT statement can be used to retrieve

records from a table. If you had database for a dog identification registry that contained

a table called dog_registry, you could select all of the records in the table with the

following statement:

 SELECT * FROM dog_registry

The asterisk, *, means all columns in the table. When you are creating a query,

you should consider where you are getting your data from, including which database

or table. You should keep in mind what fields you will use. Also be mindful of any

conditions in the selection. For example, do you need to display all of the pets in the

database or only a specific breed of dog? An example of this using the dog_registry is

shown in the following line:

 SELECT name FROM dog_registry WHERE breed = 'shiba inu'

Using different drivers will more than likely entail using different SQL syntax, but

PyQt can handle the differences. Table 14-1 lists a few common SQLite 3 commands that

will be used in this chapter’s examples.

Chapter 14 IntroduCtIon to handlIng databases

https://doc-snapshots.qt.io/qt6-dev/sql-driver.html

406

Table 14-1. A list of common SQLite keywords and functions that can be found in

this chapter1

SQLite Keywords Description

AUTOINCREMENT generates a unique number automatically when a new record is inserted into

the table

CREATE TABLE Creates a new table in the database

DELETE deletes a row from the table

DROP TABLE deletes a table that already exists in the database

FOREIGN KEY Constraint that links two tables together

FROM specifies the table to interact with when selecting or deleting data

INTEGER signed integer datatype

INSERT INTO Inserts new rows into the table

MAX() Function that finds the maximum value of a specified column

NOT NULL Constraint that ensures a column will not accept null values

PRIMARY KEY Constraint that uniquely identifies a record in the table

REFERENCES used with ForeIgn KeY to specify another table that has relation with the

first table

SELECT selects data from a database

SET Identifies which columns and values should be updated

UNIQUE Constraint that ensures all values in a column are unique

UPDATE updates existing values in a row

VALUES defines the values of an Insert Into statement

VARCHAR Variable character datatype for strings

WHERE Filters the results of a query to include only records that satisfy specific

conditions

In the following sections, we will work toward creating a user interface that can be

used to view and manage a database’s information in a table view.

1 A full list of SQLite keywords can be found at www.sqlite.org/lang_keywords.html.

Chapter 14 IntroduCtIon to handlIng databases

407

 Project 14.1 – Account Management GUI
For this project, we are going to take a different approach to designing the account

management GUI. This section builds up to the final project by working through a

number of smaller example programs. There is a good deal of information to unpack,

and if this is your first time working with SQL, especially to build an interface in PyQt,

then the process for working with databases can become a little unclear.

Imagine you have a business and you want to create a database to keep track of your

employees’ information. You want to include information such as their first and last

names, employee IDs, email addresses, departments, and the countries where they work.

(This could be extended to include more information such as salaries, phone numbers,

and dates of hire.) In the beginning, a small database is okay. However, as your workforce

builds, so will the information. Some employees may have the same first or last name or

even work in the same country. You need a way to manage all of those employees so that

fields in the database are populated with the correct information and data types.

Using a relational database, we can avoid issues with the data’s integrity. We could

set up multiple tables, one for the different employees’ accounts and one for the

countries. For this example, we only use repeating country names to demonstrate how

to use PyQt’s classes for working with relational databases. Figure 14-4 displays the

account management GUI.

Chapter 14 IntroduCtIon to handlIng databases

408

Figure 14-4. The account management GUI. The last row of the table displays a
new record being added to the database

This project is broken down into the following parts:

 1. Introduce how to use QSqlDatabase to connect to databases and

QSqlQuery for creating queries.

 2. A few examples of how to use QSqlQuery for editing

database items.

 3. Introduce QSqlTableModel for creating editable data models that

work with tables that do not contain foreign keys.

 4. Show how use to QSqlRelationalTableModel for creating editable

data models that work with tables that do have foreign key

support.

 5. Create the account management GUI.

Let’s get started!

Chapter 14 IntroduCtIon to handlIng databases

409

 Explanation for Working with the QtSql Module
In this first example, we are going to see how to use QSqlQuery to create a small

database that we will be able to view in the account management GUI. The database

has two tables, accounts and countries. The two tables are linked together through the

country_id field in accounts and the id field in countries.

Note this program does not create a guI. rather, it demonstrates how to
get started with QSqlDatabase for connecting to a database and how to use
QSqlQuery to create entries and in a database. It also creates the database,
accounts.db, that is used throughout the remainder of the chapter.

 Creating a Connection to a Database

Since this program does not create a GUI, we’ll only need to import the QSqlDatabase

and QSqlQuery classes from QtSql. We will use QSqlDatabase to create the connection

that allows access to a database; QSqlQuery will be used to perform SQL statements

in PyQt.

The connection to the database is made in Listing 14-4.

Listing 14-4. Connecting to a database with QSqlDatabase

create_database.py

Import necessary modules

import sys, random

from PyQt6.QtSql import QSqlDatabase, QSqlQuery

class CreateEmployeeData:

 """Create a sample database for the project.

 Class demonstrates how to connect to a database, create

 queries, and create tables and records in those tables."""

 # Create connection to database. If db file does not

 # exist, a new db file will be created

 # Use the SQLite version 3 driver

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

Chapter 14 IntroduCtIon to handlIng databases

410

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

We begin by creating a connection to the database in the CreateEmployeeData class.

The addDatabase() function allows you to specify the SQL driver that you want to use.

The examples in this chapter use SQLite 3 so we pass QSQLITE. Once the database object

is created, we can set the other connection parameters, including which database we are

going to use, the username, password, host name, and the connection port. For SQLite

3, we only need to specify the name of the database with setDatabaseName(). You can

also create multiple connections to a database by passing an additional argument, a

connection name, to addDatabase() after the driver argument.

Note a connection is referenced by its name, not by the name of the database.
If you want to give your database a name, pass it as an argument after the driver
in the addDatabase() method. If no name is specified, then a default connection
will be used.

If accounts.db does not already exist, then it will be created. Once the parameters

are set, you must call open() to activate the connection to the database. A connection

cannot be used until it is opened.

 Building a Dataset with QSqlQuery

Now that the connections are established in CreateEmployeeData, we can begin

querying our database. You typically might start with databases that already have data

in them, but in this example, we are going to see how we can create a database using

SQL commands. To query a database using PyQt, we first need to create an instance of

QSqlQuery. This is handled in Listing 14-5.

Listing 14-5. Building a dataset with QSqlQuery in the

CreateEmployeeData class

create_database.py

 query = QSqlQuery()

 # Erase database contents

Chapter 14 IntroduCtIon to handlIng databases

411

 query.exec("DROP TABLE accounts")

 query.exec("DROP TABLE countries")

 query.exec("""CREATE TABLE accounts (

 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 employee_id INTEGER NOT NULL,

 first_name VARCHAR(30) NOT NULL,

 last_name VARCHAR(30) NOT NULL,

 email VARCHAR(40) NOT NULL,

 department VARCHAR(20) NOT NULL,

 country_id VARCHAR(20) REFERENCES countries(id))""")

 # Positional binding to insert records into the database

 query.prepare("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

 VALUES (?, ?, ?, ?, ?, ?)""")

The exec() method is used to execute the SQL queries in PyQt. In the following

lines, we want to create a query object and delete the table accounts:

 query = QSqlQuery()

 query.exec("DROP TABLE accounts")

Let’s next create a new accounts table using exec() and the SQL command

CREATE TABLE accounts. Each table entry will have its own unique id by using

AUTOINCREMENT. The accounts table will include information for an employee’s id, first

name, last name, email, department, and the country where they are located. We also

create a countries table that holds the names of the employee’s countries and is linked

to the accounts table using the following line:

 country_id VARCHAR(20) REFERENCES countries(id))

The country_id references the countries table’s id. Figure 14-5 shows the

connection between the two tables.

Chapter 14 IntroduCtIon to handlIng databases

412

Figure 14-5. The relations between the accounts and countries tables

The next task is to insert records into the tables. We could continue to use exec()

to execute queries, but this would become tedious if we have a large database. To

insert multiple records at the same time, we separate the query from the actual values

being inserted using placeholders and the prepare() method. The placeholder will

act as a temporary variable, allowing users to supply different data using the same SQL

query. In the following code, the positional placeholders are the ?. PyQt supports two

placeholder syntaxes: the ODBC style, which uses ?, and the Oracle style, which uses

:field_name.

 query.prepare("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

 VALUES (?, ?, ?, ?, ?, ?)""")

Each field, such as employee_id or first_name, is associated with one of the

placeholders. Since we used AUTOINCREMENT for id, we do not have to include the field or

a placeholder in the query.

The prepare() method gets the query ready for execution. If the query is prepared

successfully, then values can be bound to the fields using the addBindValue() method.

For information about executing SQL statements in Qt, have a look at https://doc.

qt.io/qt-6/sql-sqlstatements.html. Different approaches for binding values are

found at https://doc.qt.io/qt-6/sql-sqlstatements.html.

Next, we’ll create the values for the first_name, last_name, and other fields in the

SQL tables using Python lists and dictionaries in Listings 14-6 and 14-7.

Chapter 14 IntroduCtIon to handlIng databases

https://doc.qt.io/qt-6/sql-sqlstatements.html
https://doc.qt.io/qt-6/sql-sqlstatements.html
https://doc.qt.io/qt-6/sql-sqlstatements.html

413

Listing 14-6. Creating the values for the example dataset in the

CreateEmployeeData class, part 1

create_database.py

 first_names = ["Emma", "Olivia", "Ava", "Isabella",

 "Sophia", "Mia", "Charlotte", "Amelia", "Evelyn",

 "Abigail", "Valorie", "Teesha", "Jazzmin", "Liam",

 "Noah", "William", "James", "Logan", "Benjamin",

 "Mason", "Elijah", "Oliver", "Jason", "Lucas",

 "Michael"]

 last_names = ["Smith", "Johnson", "Williams", "Brown",

 "Jones", "Garcia", "Miller", "Davis", "Rodriguez",

 "Martinez", "Hernandez", "Lopez", "Gonzalez",

 "Wilson", “Anderson", "Thomas", "Taylor", "Moore",

 "Jackson", "Martin", "Lee", "Perez", "Thompson",

 "White", "Harris"]

 # Create data for the first table, account

 employee_ids = random.sample(

 range(1000, 2500), len(first_names))

 countries = {"USA": 1, "India": 2, "China": 3,

 "France": 4, "Germany": 5}

 country_names = list(countries.keys())

 country_codes = list(countries.values())

 departments = ["Production", "R&D", "Marketing", "HR",

 "Finance", "Engineering", "Managerial"]

 for f_name in first_names:

 l_name = last_names.pop()

 email = (l_name + f_name[0]).lower() + "@job.com"

 country_id = random.choice(country_codes)

 dept = random.choice(departments)

 employee_id = employee_ids.pop()

 query.addBindValue(employee_id)

 query.addBindValue(f_name)

Chapter 14 IntroduCtIon to handlIng databases

414

 query.addBindValue(l_name)

 query.addBindValue(email)

 query.addBindValue(dept)

 query.addBindValue(country_id)

 query.exec()

A for loop is then used where we bind the values to the placeholders. The exec()

method is called at the end of each iteration to insert the values into the accounts table.

The countries table is prepared in a similar manner in Listing 14-7.

Listing 14-7. Creating the values for the example dataset in the

CreateEmployeeData class, part 2

create_database.py

 # Create data for the second table, countries

 country_query = QSqlQuery()

 country_query.exec("""CREATE TABLE countries (

 id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

 country VARCHAR(20) NOT NULL)""")

 country_query.prepare(

 "INSERT INTO countries (country) VALUES (?)")

 for name in country_names:

 country_query.addBindValue(name)

 country_query.exec()

 print("[INFO] Database successfully created.")

if __name__ == "__main__":

 CreateEmployeeData()

 sys.exit(0)

Once the tables are populated, we call sys.exit(0) to exit the program. There is no

QApplication instance since there is no GUI.

Chapter 14 IntroduCtIon to handlIng databases

415

 Visualizing SQL Data Using SQLite

If you want to create a readable SQLite file from accounts.db in order to visualize the

data, there are a few options. The first is to use available tools, such as SQLiteStudio at

https://sqlitestudio.pl/, for browsing databases.

Another option is to use the SQLite library. If you are using macOS or Linux, this

should already be installed on your system. For Windows, you may have to follow along

with the following additional steps (macOS and Linux users should be able to skip

this list):

 1. On the SQLite download page, www.sqlite.org/download.html,

download the Precompiled Binaries for Windows. Look for the

option that includes command-line tools. Locate where the files

have downloaded on your computer. Inside the folder, you’ll

notice three files, one of which is sqlite3.exe.

 2. Open a shell window and navigate to C:\>. Next, mkdir sqlite.

 3. Move the three files from step 1 to your new sqlite folder. One

way to do this is by opening the folder with start .\sqlite and

dragging and dropping the files.

 4. So that you’ll be able to use SQLite no matter what folder you are

in, you’ll need to add the sqlite folder you made to your PATH

environment variable. On the command line, enter $env:Path +=

";C:\sqlite".

 5. Finally, run sqlite3 in the command line, and you should enter

the SQLite shell environment. To exit, type .quit.

Once you are sure that SQLite is installed, navigate to the files folder in your

application’s directory where accounts.db is located, and use the following sqlite3

command in your shell:

$ sqlite3 accounts.db .dump >> accounts.sql

You’ll see a new file, accounts.sql, created in the files folder. Also, worth a

mention is that SQLite 3 is included as part of the standard Python library, so you can

import sqlite in your applications if necessary.

In the following section, you’ll see how to use QSqlQuery to do more than just

create tables.

Chapter 14 IntroduCtIon to handlIng databases

https://sqlitestudio.pl/
http://www.sqlite.org/download.html

416

 Explanation for Querying a Database with QSqlQuery
The program created from Listings 14-8 to 14-10 is not necessary for the accounting

manager GUI, but it does give a few more examples for understanding how to input,

update, and delete records with SQL in a PyQt application. The purpose of the section is

to demonstrate how to open an existing database and modify its contents. We’ll do this

for the database created in the “Explanation for Working with the QtSql Module” section.

For Listing 14-8, let’s import the QSqlDatabase and QSqlQuery classes again. We’ll

also create a new class called QueryExamples and create two class methods:

• createConnection() – Establishes the connection to the database

• exampleQueries() – Queries the database to acquire and modify

existing entries

Listing 14-8. Creating the connection for the QueryExamples class

query_examples.py

Import necessary modules

import sys

from PyQt6.QtSql import QSqlDatabase, QSqlQuery

class QueryExamples:

 def __init__(self):

 super().__init__()

 self.createConnection()

 self.exampleQueries()

 def createConnection(self):

 """Create connection to the database."""

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

Chapter 14 IntroduCtIon to handlIng databases

417

We start by adding a database using the SQLite 3 driver and a default connection

since no connection name is passed to addDatabase(). Next, set the database created in

the previous program, accounts.db. Next, we’ll complete the connection using open().

In exampleQueries() in Listing 14-9, let’s take a look at how to use the QSqlQuery

class and the SQL command SELECT to query the database.

Listing 14-9. Demonstrating how to access SQL databases in PyQt

query_examples.py

 def exampleQueries(self):

 """Examples of working with the database.”""

 # The QSqlQuery constructor accepts an optional

 # QSqlDatabase object that specifies which database

 # connection to use. In this example, we don't specify

 # any connection, so the default connection is used.

 # If an error occurs, exec() returns false. The error

 # is then available as QSqlQuery::lastError()

 # Executing a simple query

 query = QSqlQuery()

 query.exec("SELECT first_name, last_name FROM \

 accounts WHERE employee_id > 2000”)

 # Navigating the result set

 while (query.next()):

 f_name = str(query.value(0))

 l_name = str(query.value(1))

 print(f_name, l_name)

We create a new QSqlQuery instance to search for the first and last names of the

employees whose employee ids are greater than 2000.

With that query, we could use the values from first_name and last_name to update

or delete records. To cycle through the results of the query, we use the QSqlQuery

method next(). Other methods that could be used to navigate the results include

next(), previous(), first(), and last().

Additional queries are shown in Listing 14-10.

Chapter 14 IntroduCtIon to handlIng databases

418

Listing 14-10. Demonstrating how to insert, update, and delete records using

SQL and PyQt

query_examples.py

 # Inserting a single new record into the database

 query.exec("""INSERT INTO accounts (

 employee_id, first_name, last_name,

 email, department, country_id)

 VALUES (2134, 'Robert', 'Downey',

 'downeyr@job.com', 'Managerial', 1)""")

 # Update a record in the database

 query.exec("UPDATE accounts SET department = 'R&D' \

 WHERE employee_id = 2134")

 # Delete a record from the database

 query.exec("DELETE FROM accounts WHERE \

 employee_id <= 1500")

if __name__ == "__main__":

 QueryExamples()

 sys.exit(0)

To insert a single record, we can use the INSERT SQL command. In this query,

we insert specific values for each field. You could also add multiple records into the

database. Refer back to the “Explanation for Working with the QtSql Module” section to

see how.

To update records, use UPDATE. We update the department value for the employee

that was just inserted. Finally, to delete a record, use DELETE.

This example also has no GUI window. To see the changes, you could run this

program after running the program in the “Explanation for Working with the QtSql

Module” section and then use the GUI in the next section to visualize the results in

a table.

Chapter 14 IntroduCtIon to handlIng databases

419

 Working with the QSqlTableModel Class
We are finally going to create a GUI for visualizing the database’s contents. In the table

in Figure 14-6, we are only going to visualize the accounts table to demonstrate the

QSqlTableModel class, an interface that is useful for reading and writing database

records when you only need to use a single table with no links to other tables. The

following program will demonstrate how to use Model/View programming to view the

contents of a SQL database.

Figure 14-6. The table created using QSqlTableModel

We could use QSqlQuery to do all of the database work, but combining the class with

the Model/View paradigm allows us to design GUIs that make the data management

process simpler.

 Explanation for Working with QSqlTableModel

Get started by using the basic_window.py script from Chapter 1 and then import the

PyQt classes we need, including QSqlTableModel, in Listing 14-11. QHeaderView is the

class that provides both horizontal and vertical headers for item view classes.

Next, create the MainWindow class for displaying the contents of the database.

Chapter 14 IntroduCtIon to handlIng databases

420

Listing 14-11. Code for the MainWindow class using QSqlTableModel

table_model.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QTableView, QHeaderView, QMessageBox, QVBoxLayout)

from PyQt6.QtSql import QSqlDatabase, QSqlTableModel

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(1000, 500)

 self.setWindowTitle("SQL Table Model")

 self.createConnection()

 self.setUpMainWindow()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

We’ll call createConnection() before setUpMainWindow() since the model

and view objects in the main window rely on the data from the database. In the

createConnection() method in Listing 14-12, we connect to the database and activate

the connection with open(). This time, let’s check to make sure that the tables we want

to use are in the database. If they cannot be found, then a dialog box like the one in

Figure 14-7 will be displayed to inform the user and the program will close.

Chapter 14 IntroduCtIon to handlIng databases

421

Figure 14-7. QMessageBox letting users know that the table they want to view
is missing

Listing 14-12. Code for the createConnection() method in the

QSqlTableModel example

table_model.py

 def createConnection(self):

 """Set up the connection to the database.

 Check for the tables needed."""

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {"accounts"}

 tables_not_found = tables_needed - \

 set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, "Error",

 f"""<p>The following tables are missing

 from the database: {tables_not_found}</p>""")

 sys.exit(1) # Error code 1 - signifies error

The instances of the QSqlTableModel and the QTableView are created in the

setUpMainWindow() method in Listing 14-13. For QSqlTableModel, we need to set the

database table we want to use with setTable(). Here, we’ll use the accounts table.

Chapter 14 IntroduCtIon to handlIng databases

422

Listing 14-13. Code for the setUpMainWindow() method in the

QSqlTableModel example

table_model.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create the model

 model = QSqlTableModel()

 model.setTable("accounts")

 table_view = QTableView()

 table_view.setModel(model)

 table_view.horizontalHeader().setSectionResizeMode(

 QHeaderView.ResizeMode.Stretch)

 # Populate the model with data

 model.select()

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(table_view)

 self.setLayout(main_v_box)

Next, create a QTableView object and set its model using setModel(). To make the

table stretch to fit into the view horizontally, we use the following line:

 table_view.horizontalHeader().setSectionResizeMode(

 QHeaderView.Stretch)

This line also handles stretching the table when the window resizes.

Finally, the model is populated with data using select(). If you have made changes

to the table but have not submitted them, then select() will cause the edited items to

return back to their previous states.

Figure 14-6 displays the contents of the database in a table view. Notice how the

header labels display the field names used when the database was created. We will see

how to set header labels when we actually create the account management GUI. Also,

the country_id column currently only displays numbers associated with the different

names in the countries table. If you only want to display specific columns, the following

code lets you select which ones you want to display:

Chapter 14 IntroduCtIon to handlIng databases

423

 model.setQuery(QSqlQuery("SELECT id, employee_id,

 first_name, last_name FROM accounts"))

In the next section, you’ll find out how to create and display relations set by foreign

keys in the table view.

 Working with the QSqlRelationalTableModel Class
Next, we are going to see how to use the QSqlRelationalTableModel class for working

with relational databases. The QSqlRelationalTableModel class provides a model for

managing and editing data in a SQL table, with additional support for using foreign keys.

A foreign key is a SQL constraint used to link tables together.

The application in Figure 14-8 builds upon the GUI in the “Working with the

QSqlTableModel Class” section.

Figure 14-8. The table created using QSqlRelationalTableModel

 Explanation for Working with QSqlRelationalTableModel

Start with basic_window.py script from Chapter 1. This time we need to import

QSqlRelationalTableModel since we are working with relational databases and foreign

keys. Also, QSqlRelation is included because we’ll need to use the class to store the

Chapter 14 IntroduCtIon to handlIng databases

424

information about SQL foreign keys. The QSqlRelationalDelegate is also needed

because we’ll need to display editor widgets in the columns that pertain to foreign keys.

Listing 14-14 handles all of this as well as sets up the MainWindow class.

Listing 14-14. Code for the MainWindow class using QSqlRelationalTableModel

relational_model.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QTableView, QMessageBox, QHeaderView, QVBoxLayout)

from PyQt6.QtSql import (QSqlDatabase, QSqlRelation,

 QSqlRelationalTableModel, QSqlRelationalDelegate)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(1000, 500)

 self.setWindowTitle("Relational Table Model")

 self.createConnection()

 self.setUpMainWindow()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

We connect to the database in Listing 14-15 just like we did in the QSqlTableModel

example, except this time we are checking for both tables, accounts and countries.

Chapter 14 IntroduCtIon to handlIng databases

425

Listing 14-15. Code for the createConnection() method in the

QSqlRelationalTableModel example

relational_model.py

 def createConnection(self):

 """Set up the connection to the database.

 Check for the tables needed."""

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {"accounts", "countries"}

 tables_not_found = tables_needed - \

 set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, "Error",

 f"""<p>The following tables are missing

 from the database: {tables_not_found}</p>""")

 sys.exit(1) # Error code 1 - signifies error

For setUpMainWindow() in Listing 14-16, create instances of the

QSqlRelationalTableModel and QTableView classes. The setTable() method causes

model to fetch the accounts table’s information.

Listing 14-16. Code for the setUpMainWindow() method in the

QSqlRelationalTableModel example

relational_model.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create the model

 model = QSqlRelationalTableModel()

 model.setTable("accounts")

Chapter 14 IntroduCtIon to handlIng databases

426

 # Set up relationship for foreign keys

 model.setRelation(model.fieldIndex("country_id"),

 QSqlRelation("countries", "id", "country"))

 table_view = QTableView()

 table_view.setModel(model)

 table_view.horizontalHeader().setSectionResizeMode(

 QHeaderView.ResizeMode.Stretch)

 # Populate the model with data

 model.select()

The country_id field in accounts is mapped to countries table’s field, id. For the

QSqlRelationalTableModel method setRelation(), we’ll need to pass the index of the

column that contains a foreign key (done with fieldIndex()) and a QSqlRelation object

that defines the relationship. For QSqlRelation, the field id of table countries maps to

country_id in the accounts table. The final argument, country, specifies which field

should be displayed in the accounts table.

If you compare Figure 14-8 to Figure 14-6, you’ll notice that data in the last column,

country, has been updated to display the names of the countries and that the header has

also been changed to country.

Adding Delegates to Edit Relational Data

The purpose of delegates when using Model/View classes becomes more obvious when

you either start creating your own custom classes or when you need to use relational

classes to select values for fields with foreign keys. With a delegate, an editor widget such

as QLineEdit or QComboBox will appear when a user is editing data. You may not have

even realized that every time you edit values in the cells of QTableView, you have been

using a delegate all along. That’s because of how Qt seamlessly blends the view and

delegates.

For SQL relational databases, QSqlRelationalDelegate data from a

QSqlRelationalTableModel can be viewed and edited.

For the final portion of setUpMainWindow(), let’s create a QSqlRelationalDelegate

instance and add it to table_view using setItemDelegate() in Listing 14-17.

Chapter 14 IntroduCtIon to handlIng databases

427

Listing 14-17. Adding delegates in the QSqlRelationalTableModel example

relational_model.py

 # Instantiate the delegate

 delegate = QSqlRelationalDelegate()

 table_view.setItemDelegate(delegate)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(table_view)

 self.setLayout(main_v_box)

Now if you double-click in the country column, you will see a QComboBox appear

containing the list of countries. An example of this is shown in Figure 14-9.

Figure 14-9. An editor widget (QComboBox) displayed in a column with
foreign keys

The last step is to create and set the layout for the main window.

By this point, you should have a fundamental understanding of how to use model

and view classes, use QtSql classes to perform queries, and display foreign key

relationships in a table using relational classes. We are now ready to build the account

management GUI.

Chapter 14 IntroduCtIon to handlIng databases

428

 Explanation for the Account Management GUI
The account management GUI uses the QSqlRelationalTableModel for managing

the accounts and countries tables. We'll use the concepts we learned in the previous

sections to design a GUI with features for managing the database directly rather than

programmatically. Refer back to Figure 14-4 to see the interface.

The application lets a user add, delete, and sort the contents of the table. Rows

added or deleted will also update the database.

Also, be sure to download the icons folder from GitHub for this project.

For Listing 14-18, let’s start with the basic_window.py script from Chapter 1 and

import a variety of classes.

Listing 14-18. Code for the MainWindow class in the account management GUI

account_manager.py

Import necessary modules

import sys, os

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QPushButton, QComboBox, QTableView, QHeaderView,

 QAbstractItemView, QMessageBox, QHBoxLayout, QVBoxLayout,

 QSizePolicy)

from PyQt6.QtCore import Qt

from PyQt6.QtGui import QIcon

from PyQt6.QtSql import (QSqlDatabase, QSqlQuery,

 QSqlRelation, QSqlRelationalTableModel,

 QSqlRelationalDelegate)

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(1000, 600)

 self.setWindowTitle("14.1 – Account Management GUI")

Chapter 14 IntroduCtIon to handlIng databases

429

 self.createConnection()

 self.createModel()

 self.setUpMainWindow()

 self.show()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

For this GUI, a separate method, createModel(), will create the

QSqlRelationalTableModel that is used by the QTableView object in

setUpMainWindow(). This is done to help organize the code.

The next task is to connect to accounts.db just like we have previously done in

createConnections(). This is handled in Listing 14-19.

Listing 14-19. Code for the createConnection() method in the account

management GUI

account_manager.py

 def createConnection(self):

 """Set up the connection to the database.

 Check for the tables needed."""

 database = QSqlDatabase.addDatabase("QSQLITE")

 database.setDatabaseName("files/accounts.db")

 if not database.open():

 print("Unable to open data source file.")

 sys.exit(1) # Error code 1 - signifies error

 # Check if the tables we need exist in the database

 tables_needed = {"accounts", "countries"}

 tables_not_found = tables_needed - \

 set(database.tables())

 if tables_not_found:

 QMessageBox.critical(None, "Error",

 f"""<p>The following tables are missing

 from the database: {tables_not_found}</p>""")

 sys.exit(1) # Error code 1 - signifies error

Chapter 14 IntroduCtIon to handlIng databases

430

The createModel() method in Listing 14-20 instantiates and sets up model,

establishing the foreign key relationship between the two tables with setRelation().

The setHeaderData() method applies labels to each of the columns. We can use the

QSqlTableModel method that QSqlRelationalTableModel inherits, fieldIndex(), to

specify the index of a field name and modify its value.

Listing 14-20. Code for the createModel() method for the account

management GUI

account_manager.py

 def createModel(self):

 """Set up the model and headers, and populate the

 model."""

 self.model = QSqlRelationalTableModel()

 self.model.setTable("accounts")

 self.model.setRelation(

 self.model.fieldIndex("country_id"),

 QSqlRelation("countries", "id", "country"))

 self.model.setHeaderData(

 self.model.fieldIndex("id"),

 Qt.Orientation.Horizontal, "ID")

 self.model.setHeaderData(

 self.model.fieldIndex("employee_id"),

 Qt.Orientation.Horizontal, "Employee ID")

 self.model.setHeaderData(

 self.model.fieldIndex("first_name"),

 Qt.Orientation.Horizontal, "First")

 self.model.setHeaderData(

 self.model.fieldIndex("last_name"),

 Qt.Orientation.Horizontal, "Last")

 self.model.setHeaderData(

 self.model.fieldIndex("email"),

 Qt.Orientation.Horizontal, "E-mail")

 self.model.setHeaderData(

 self.model.fieldIndex("department"),

 Qt.Orientation.Horizontal, "Dept.")

Chapter 14 IntroduCtIon to handlIng databases

431

 self.model.setHeaderData(

 self.model.fieldIndex("country_id"),

 Qt.Orientation.Horizontal, "Country")

 # Populate the model with data

 self.model.select()

The QTableView object, table_view, is created in Listing 14-21 in the

setUpMainWindow() method. The GUI’s labels, push buttons, and combo box are also

instantiated.

Listing 14-21. Code for the setUpMainWindow() method in the account

management GUI, part 1

account_manager.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 icons_path = "icons"

 title = QLabel("Account Management System")

 title.setSizePolicy(QSizePolicy.Policy.Fixed,

 QSizePolicy.Policy.Fixed)

 title.setStyleSheet("font: bold 24px")

 add_product_button = QPushButton("Add Employee")

 add_product_button.setIcon(QIcon(os.path.join(

 icons_path, "add_user.png")))

 add_product_button.setStyleSheet("padding: 10px")

 add_product_button.clicked.connect(self.addItem)

 del_product_button = QPushButton("Delete")

 del_product_button.setIcon(QIcon(os.path.join(

 icons_path, "trash_can.png")))

 del_product_button.setStyleSheet("padding: 10px")

 del_product_button.clicked.connect(self.deleteItem)

 # Set up sorting combobox

 sorting_options = [

 "Sort by ID", "Sort by Employee ID",

Chapter 14 IntroduCtIon to handlIng databases

432

 "Sort by First Name", "Sort by Last Name",

 "Sort by Department", "Sort by Country"]

 sort_combo = QComboBox()

 sort_combo.addItems(sorting_options)

 sort_combo.currentTextChanged.connect(

 self.setSortingOrder)

 buttons_h_box = QHBoxLayout()

 buttons_h_box.addWidget(add_product_button)

 buttons_h_box.addWidget(del_product_button)

 buttons_h_box.addStretch()

 buttons_h_box.addWidget(sort_combo)

 # Widget to contain editing buttons

 edit_container = QWidget()

 edit_container.setLayout(buttons_h_box)

The add_product_button and del_product_button objects are used to add and

delete items from the table and the model. Each button is connected to a slot using the

clicked signal. The slots are created in Listing 14-23.

Items in a view can also be sorted. The sort_combo provides various ways to organize

the table’s data based on the column names. For the QComboBox, when the selection has

changed, the widget can emit a currentTextChanged signal. The signal also passes text

that we can use to determine how to set the view’s order for displaying records in the

setSortingOrder() slot. This is handled in Listing 14-24. The widgets are then arranged

in buttons_h_box and added to edit_container.

For table_view, in Listing 14-22, we set its model and a few parameters. These

include setting the table’s vertical and horizontal headers to stretch and fill the space in

the window. For this example, users can only select single items in the table using the

flag SingleSelection.

Listing 14-22. Code for the setUpMainWindow() method in the account

management GUI, part 2

account_manager.py

 # Create table view and set model

 self.table_view = QTableView()

 self.table_view.setModel(self.model)

Chapter 14 IntroduCtIon to handlIng databases

433

 horizontal = self.table_view.horizontalHeader()

 horizontal.setSectionResizeMode(

 QHeaderView.ResizeMode.Stretch)

 vertical = self.table_view.verticalHeader()

 vertical.setSectionResizeMode(

 QHeaderView.ResizeMode.Stretch)

 self.table_view.setSelectionMode(

 QAbstractItemView.SelectionMode.SingleSelection)

 self.table_view.setSelectionBehavior(

 QAbstractItemView.SelectionBehavior.SelectRows)

 # Instantiate the delegate

 delegate = QSqlRelationalDelegate()

 self.table_view.setItemDelegate(delegate)

 # Main layout

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(

 title, Qt.AlignmentFlag.AlignLeft)

 main_v_box.addWidget(edit_container)

 main_v_box.addWidget(self.table_view)

 self.setLayout(main_v_box)

For view classes, the behavior for selecting rows, columns, or single items can be

defined using QAbstractItemView.SelectionBehavior. The following list describes the

different flags:

• SelectRows – Only rows can be selected

• SelectColumns – Only columns can be selected

• SelectItems – Only individual items can be selected

In Model/View programming, the delegate provides the default tools for painting

item data in the view and for providing editor widgets for item models. The appearance

and editor widgets of the item delegate can be customized. For the account management

GUI, the delegate used is the QSqlRelationalDelegate. This class provides a combo box

for editing data in fields that are foreign keys for other tables.

Chapter 14 IntroduCtIon to handlIng databases

434

An example of the combo box used by the delegate can be seen in the bottom-right

corner of Figure 14-4. The widget appears whenever the user needs to select a country

from the countries table that will be displayed in the view.

For addItem() in Listing 14-23, we check how many rows are in the table with

rowCount() and use insertRow() to insert an empty row at the end of table view. We

query the database to find out the largest id value in the table. If a user does not enter

a value for id into the row, then the new record’s id is equal to the highest id value

plus one. It is also worth noting that if every item in the new row is not filled in, the new

record will not be saved to the model upon closing the application.

Listing 14-23. Code for addItem() and deleteItem() slots in the account

management GUI

account_manager.py

 def addItem(self):

 """Add a new record to the last row of the table."""

 last_row = self.model.rowCount()

 self.model.insertRow(last_row)

 query = QSqlQuery()

 query.exec("SELECT MAX (id) FROM accounts")

 if query.next():

 int(query.value(0))

 def deleteItem(self):

 """Delete an entire row from the table."""

 current_item = self.table_view.selectedIndexes()

 for index in current_item:

 self.model.removeRow(index.row())

 self.model.select()

For deleteItem(), we get the currently selected row’s index and delete the row with

removeRow(). Then we update the model using select().

The last slot to create in the MainWindow class is setSortingOrder(). We’ll use the

text that is passed from the currentTextChanged signal to determine how to sort the

data. For example, if the user wants to order the items using employee id numbers,

Chapter 14 IntroduCtIon to handlIng databases

435

they’ll first select Sort by Employee ID in the QComboBox. The signal is then emitted,

and the value of text is compared in various conditions in setSortingOrder(). The

setSort() method is then used to organize the employee_id field in ascending order.

Listing 14-24. Code for setSortingOrder() slot in the account management GUI

account_manager.py

 def setSortingOrder(self, text):

 """Sort the rows in the table."""

 if text == "Sort by ID":

 self.model.setSort(self.model.fieldIndex("id"),

 Qt.SortOrder.AscendingOrder)

 elif text == "Sort by Employee ID":

 self.model.setSort(

 self.model.fieldIndex("employee_id"),

 Qt.SortOrder.AscendingOrder)

 elif text == "Sort by First Name":

 self.model.setSort(

 self.model.fieldIndex("first_name"),

 Qt.SortOrder.AscendingOrder)

 elif text == "Sort by Last Name":

 self.model.setSort(

 self.model.fieldIndex("last_name"),

 Qt.SortOrder.AscendingOrder)

 elif text == "Sort by Department":

 self.model.setSort(

 self.model.fieldIndex("department"),

 Qt.SortOrder.AscendingOrder)

 elif text == "Sort by Country":

 self.model.setSort(

 self.model.fieldIndex("country"),

 Qt.SortOrder.AscendingOrder)

 self.model.select()

Finally, select() is called to update the model and view with the data.

Chapter 14 IntroduCtIon to handlIng databases

436

At this point, you should run the application and test it out. If you want to tinker

around with the code, first have a look at the different selection modes and selection

behaviors. From there, you could go back to the SQL database and try implementing

additional fields or create new foreign keys to test out the relational classes.

 Summary
PyQt provides convenience classes for lists, tables, and trees. QListWidget,

QTableWidget, and QTreeWidget are useful when you need to view data for general

situations. While they are practical for creating quick interfaces for editing data, if you

need to have more than one widget for displaying a dataset in an application, you must

also create a process for keeping the datasets and the widgets in agreement. A better

option is to use PyQt’s Model/View architecture.

There are different formats available for storing and managing data. One example

is the CSV format that is convenient for reading, parsing, and storing smaller datasets.

However, for large databases that contain multiple tables with relational characteristics,

a Relational Database Management System that uses the SQL language is a more

preferable option for managing the data. SQL allows users to select desired information

that might be shared between tables as well as insert, update, and delete existing

records easily.

Model/View is very useful for working with SQL databases, providing the tools

necessary for connecting to a database and viewing its content. Qt provides three

models for working with SQL databases. For an editable data model without foreign

key support, use QSqlTableModel. If you have tables with relational properties, use

QSqlRelationalTableModel. Finally, the QSqlQueryModel is beneficial when you only

need to read the results of a query without editing them.

Over the course of this book, we took a look at a few applications that could have

benefited greatly from data management. The login GUI in Chapter 3 could connect to

a database to retrieve usernames and passwords. There is also the pizza ordering GUI

from Chapter 6. You could implement a database for storing customer’s information,

using a relational database for adding new customers, updating existing ones, and

preventing data from being duplicated.

In Chapter 15, we will take a brief look at multithreading in PyQt.

Chapter 14 IntroduCtIon to handlIng databases

437
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_15

CHAPTER 15

Managing Threads
We have all experienced that moment when running some process such as copying files

between directories or launching a new instance of an application causes a program to

lag for just a moment and, in some cases, to freeze completely. We are then forced to

either wait for the current task to complete or Ctrl+Alt+Delete our way to freedom. When

you are creating GUIs, you should be aware of how to handle and have foresight about

avoiding these situations.

In this chapter, you will

• Consider techniques to handle time-consuming processes in PyQt

• Learn how to implement threading in GUIs with QThread

• Use the QProgressBar widget for giving visual feedback about a task’s

progression

The motivation behind this chapter is twofold: to help you design more robust GUI

applications while also informing you how you might be able to handle situations where

your applications need to run long processes. Any action that causes event processing to

come to a standstill is bad for a user’s experience.

 Introduction to Threading
A computer’s performance can be measured by the accuracy, efficiency, and speed at

which it can execute program instructions. Modern computers can take advantage of

their multicore processors to run those instructions in parallel, thereby increasing the

performance of computer applications that have been written to utilize a multicore

architecture.

https://doi.org/10.1007/978-1-4842-7999-1_15

438

The idea of performing tasks in a synchronous manner where only one task

is processed at a time until completion before moving on to the next task can be

inefficient, especially for larger operations. What we need is a way to perform operations

concurrently. That is where threads and processes come into play.

Threads and processes are not the same thing. Without going too much into the

technical jargon, let’s try and understand the differences between the two. A process is an

instance of an application that requires memory and computer resources to run. Opening

up the word processor on your computer to write an essay is one process. While writing

your essay, you need to search on the Internet for information. You now have two separate

processes running on your computer independently and in parallel. What happens in one

process is not influencing the other. Of course, you have multiple tabs open in the web

browser, and each tab is loading and updating information; those tabs are working side by

side with the web browser. This is where a thread becomes important.

A thread is essential to the concurrency within an individual process. When a

process begins, it only has one thread, and multiple threads can be started within

a single process. These threads, just like the processes, are managed by the central

processing unit (CPU). Multithreading occurs when the CPU can handle multiple

threads of execution concurrently within one process. These threads are independent

but also share the process’s resources. Using multithreading allows for applications to be

more responsive to user’s inputs while other operations are occurring in the background

and to better utilize a system’s resources.

On a system with a CPU with only a single core, true parallelism is actually

unachievable. In these instances, the CPU is shared among the processes or threads. To

switch between threads, context switches are used to interrupt the current thread, save

its state, and then restore the next thread’s state. This gives the user a false appearance of

parallelism.

To achieve true parallelism and create a truly concurrent system, a multicore processor

would allow threads in a multithreaded application to be assigned to different processors.

 Threading in PyQt
Applications based on Qt are event based. When the event loop is started using exec(),

a thread is created. This thread is referred to as the main thread of the GUI. Any events

that take place in the main thread, including the GUI itself, run synchronously within the

main event loop. To take advantage of threading, we need to create a secondary thread

to offload processing operations from the main thread.

Chapter 15 Managing threads

439

PyQt makes communicating between the main thread and secondary threads,

also referred to as worker threads, simple with signals and slots. This can be useful for

relaying feedback, allowing the user to interrupt a process, and for informing the main

thread that a process has finished. Since threads utilize the same address space, they can

share data very easily.

Be cautious, though. If multiple threads try to access shared data or resources

concurrently, this can cause crashes or memory corruption. Deadlock is another issue

that can occur if two threads are blocked because they are waiting for resources. PyQt

provides a few classes, for example, QMutex, QReadWriteLock, and QSemaphore, for

avoiding these kinds of problems.

Note python also has a number of modules for handling threading
and processing tasks, including _thread, threading, asyncio, and
multiprocessing. While you can also use these modules, pyQt’s QThread and
other classes allow you to emit signals between the main and worker threads.

 Methods for Processing Long Events in PyQt
While this chapter focuses on using QThread, it is also a good idea to keep in mind that

there are also other ways that you might want to try before attempting to use threading

in your GUI. Implementing threading can lead to problems with concurrency and

identifying errors. Combined with signals and slots, PyQt provides a few different ways to

handle time-consuming operations.

Choosing which method is best for your application comes down to considering your

situation. The following are the main methods, including threading, for handling these

kinds of events:

 1. If there is a process in your application that is causing it to freeze,

check to see if that process can be broken down into smaller

steps and perform them sequentially. Manually handle the

processing of long operations, and explicitly call QApplication.

processEvents() to process pending events. This works best if

your operations can be processed using a single thread.

Chapter 15 Managing threads

440

 2. With QTimer and signals and slots, you can schedule operations to

be performed at certain intervals in the future.

 3. Use QThread to create a worker thread that will perform long

operations in a separate thread. Derive a class from QThread,

reimplement run(), and use signals and slots to communicate

with the main thread. This method can help to avoid blocking the

main event loop.

 4. The QThreadPool and QRunnable classes can be used to divide the

work across the CPU cores on your computer. Create a subclass

of QRunnable and reimplement the run() function; an instance

of QRunnable can then be passed to threads that are managed by

QThreadPool. QThreadPool handles the queuing and execution of

QRunnable instances for you.

There are even other options that may depend upon your application’s

requirements. Keep in mind that while using threads could benefit your application, they

could also slow it down or cause errors if used incorrectly.

 Project 15.1 – File Renaming GUI
Creating and labeling datasets often entails writing Python scripts for labeling thousands

of images and data files. Those scripts are generally written to include some kind of

visual feedback to the user about how the process is going in the command line.

For the GUI in Figure 15-1, we are going to create a GUI that will allow us to select

a local directory and edit the names of files in the folder with the specified extension.

The interface includes QTextEdit and QProgressBar widgets as two different means

of feedback about the file labeling process. This application also takes advantage of

the QThread class so that users are still able to interact with the interface while the

operations are being performed in the background.

Chapter 15 Managing threads

441

Figure 15-1. The interface for renaming files in a selected directory

 The QProgressBar Widget
The QProgressBar widget visually relays the progress of an extended operation back

to the user. This feedback can also be used as reassurance that a process such as a

download, installation, or file transfer is still running. Some of the settings that can be

controlled include the widget’s orientation and range.

Refer to the project in the following sections for setting up a progress bar.

 Explanation for File Renaming GUI
The GUI window contains various buttons and editor widgets that allow the user to

manage file renaming. The user can select a directory using a QPushButton and the

QFileDialog that appears. The new file name can be entered into a QLineEdit widget.

Using a QComboBox, the file extension for the files that need to be changed can also be

selected.

The application uses threading to update the progress bar, display information about

the files being changed in the text edit, and perform the actual renaming operation. This

is all done using signals and slots.

Chapter 15 Managing threads

442

Let’s start by using the basic_window.py script from Chapter 1 as a template. Next,

import the Python and PyQt classes in Listing 15-1. The QThread class is part of QtCore.

Listing 15-1. Code for imports and the style sheet used in the file renaming GUI

file_rename_threading.py

Import necessary modules

import os, sys, time

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QProgressBar, QLineEdit, QPushButton, QTextEdit,

 QComboBox, QFileDialog, QGridLayout)

from PyQt6.QtCore import pyqtSignal, QThread

style_sheet = """

 QProgressBar{

 background-color: #C0C6CA;

 color: #FFFFFF;

 border: 1px solid grey;

 padding: 3px;

 height: 15px;

 text-align: center;

 }

 QProgressBar::chunk{

 background: #538DB8;

 width: 5px;

 margin: 0.5px

 }

"""

The style sheet is used to modify the appearance of the QProgressBar. Besides

changing the look of the progress bar, we can also edit the appearance of the subcontrol

chunk in order to create a blocky look to the bars as they update.

For this GUI, let’s create a class that inherits QThread. The Worker class in Listing 15-2

will be used to update the progress bar, update the text edit widget, and actually perform

the task of renaming the image files, thereby freeing up the main event loop to perform

other tasks. An instance of a QThread class manages only one thread.

Chapter 15 Managing threads

443

Three custom signals are created for updating the progress bar and text edit widgets:

• update_value_signal – Emits a signal that is used to update the

integer value of the progress bar

• update_text_edit_signal – Used to update the content of the

QTextEdit widget. Passes string information about the old file name

and the new file name

• clear_text_edit_signal – Signal that is used to clear the text edit

widget if the user stops running the worker thread

Listing 15-2. Creating the Worker class that subclasses QThread

file_rename_threading.py

Create worker thread for running tasks like updating

the progress bar, renaming photos, displaying information

in the text edit widget.

class Worker(QThread):

 update_value_signal = pyqtSignal(int)

 update_text_edit_signal = pyqtSignal(str, str)

 clear_text_edit_signal = pyqtSignal()

 def __init__(self, dir, ext, prefix):

 super().__init__()

 self.dir = dir

 self.ext = ext

 self.prefix = prefix

 def stopRunning(self):

 """Terminate the thread."""

 self.terminate()

 self.wait()

 self.update_value_signal.emit(0)

 self.clear_text_edit_signal.emit()

 def run(self):

 """The thread begins running from here.

 run() is only called after start()."""

Chapter 15 Managing threads

444

 for (i, file) in enumerate(os.listdir(self.dir)):

 _, file_ext = os.path.splitext(file)

 if file_ext == self.ext:

 new_file_name = self.prefix + str(i) + \

 self.ext

 src_path = os.path.join(self.dir, file)

 dst_path = os.path.join(

 self.dir, new_file_name)

 # os.rename(src, dst): src is original address

 # of file to be renamed and dst is destination

 # location with new name

 os.rename(src_path, dst_path)

 # Uncomment if process is too fast and want to

 # see the updates

 #time.sleep(1.0)

 self.update_value_signal.emit(i + 1)

 self.update_text_edit_signal.emit(

 file, new_file_name)

 else:

 pass

 # Reset the value of the progress bar

 self.update_value_signal.emit(0)

The reimplemented QThread method, run(), begins executing the thread. The time-

consuming operations – traversing the directory, renaming files, and emitting the signals

for updating the QProgressBar and QTextEdit – are performed in run(). However, this

method is not called directly. The QThread method start() is used to communicate with

the worker thread and begin executing the thread by calling run(). The start() method

is called from the MainWindow class method renameFiles() in Listing 15-8.

The stopRunning() slot is used to end the thread’s processes when the user pushes

the Stop button in the main window. The terminate() method is used to end the thread,

and wait() is used to make sure that the thread ends by blocking the thread.

Listing 15-3 begins creating the MainWindow class that inherits QWidget.

Chapter 15 Managing threads

445

Listing 15-3. Base code for the MainWindow class

file_rename_threading.py

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(600, 250)

 self.setWindowTitle("15.1 - Change File Names GUI")

 self.directory = ""

 self.combo_value = ""

 self.setUpMainWindow()

 self.show()

if __name__ == "__main__":

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = MainWindow()

 sys.exit(app.exec())

The variable directory is used to store the value of the directory selected, and

combo_value pertains to the file extension value selected in the QComboBox.

In Listing 15-4, setUpMainWindow() is used to create the label, line edit, and button

for selecting a directory. Various widgets in this program also use tooltips to provide

more information to the user about a widget’s purpose or functionality.

Listing 15-4. Creating the setUpMainWindow() for the file renaming GUI, part 1

file_rename_threading.py

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 dir_label = QLabel(

 """<p>Use Button to Choose Directory and

 Change File Names:</p>""")

Chapter 15 Managing threads

446

 self.dir_edit = QLineEdit()

 dir_button = QPushButton("Select Directory")

 dir_button.setToolTip("Select file directory.")

 dir_button.clicked.connect(self.chooseDirectory)

For specifying new file names, text can be entered into change_name_edit in

Listing 15-5. The QComboBox is used to determine which file types to change in the

selected directory. Only files with the selected extension will be changed while the

renaming process is running.

Listing 15-5. Creating the setUpMainWindow() for the file renaming GUI, part 2

file_rename_threading.py

 self.change_name_edit = QLineEdit()

 self.change_name_edit.setToolTip(

 """<p>Files will be appended with numerical

 values. For example: filename01.jpg</p>""")

 self.change_name_edit.setPlaceholderText(

 "Change file names to…")

 file_exts = [".jpg", ".jpeg", ".png", ".gif", ".txt"]

 self.combo_value = file_exts[0]

 # Create combo box for selecting file extensions

 ext_combo = QComboBox()

 ext_combo.setToolTip(

 "Only files with this extension will be changed.")

 ext_combo.addItems(file_exts)

 ext_combo.currentTextChanged.connect(

 self.updateComboValue)

 rename_button = QPushButton("Rename Files")

 rename_button.setToolTip(

 "Begin renaming files in directory.")

 rename_button.clicked.connect(self.renameFiles)

The rename_button instance is used to begin the process of renaming files. Clicking

the button emits a signal that calls the renameFiles() slot.

Chapter 15 Managing threads

447

Listing 15-6 finishes setting up the main window by creating the text edit and

progress bar widgets that provide feedback about the renaming process. In addition, a

QPushButton is created that will be enabled after rename_button is pressed and while

files are being renamed.

Listing 15-6. Creating the setUpMainWindow() for the file renaming GUI, part 3

file_rename_threading.py

 # Text edit is for displaying the file names as they

 # are updated

 self.display_files_tedit = QTextEdit()

 self.display_files_tedit.setReadOnly(True)

 self.progress_bar = QProgressBar()

 self.progress_bar.setValue(0)

 self.stop_button = QPushButton("Stop")

 self.stop_button.setEnabled(False)

 # Create layout and arrange widgets

 grid = QGridLayout()

 grid.addWidget(dir_label, 0, 0)

 grid.addWidget(self.dir_edit, 1, 0, 1, 2)

 grid.addWidget(dir_button, 1, 2)

 grid.addWidget(self.change_name_edit, 2, 0)

 grid.addWidget(ext_combo, 2, 1)

 grid.addWidget(rename_button, 2, 2)

 grid.addWidget(self.display_files_tedit, 3, 0, 1, 3)

 grid.addWidget(self.progress_bar, 4, 0, 1, 2)

 grid.addWidget(self.stop_button, 4, 2)

 self.setLayout(grid)

The widgets are then organized in a QGridLayout.

The chooseDirectory() slot in Listing 15-7 is called when dir_button is clicked

and opens a QFileDialog for selecting directories. Once a directory is chosen, the user

can enter the new file names into change_name_edit and select the file extension for the

types of files to change in the combo box.

Chapter 15 Managing threads

448

Listing 15-7. Creating the chooseDirectory() slot

file_rename_threading.py

 def chooseDirectory(self):

 """Choose file directory."""

 file_dialog = QFileDialog(self)

 file_dialog.setFileMode(

 QFileDialog.FileMode.Directory)

 self.directory = file_dialog.getExistingDirectory(

 self, "Open Directory", "",

 QFileDialog.Option.ShowDirsOnly)

 if self.directory:

 self.dir_edit.setText(self.directory)

 # Set the max value of progress bar equal to max

 # number of files in the directory

 num_of_files = len(

 [name for name in os.listdir(self.directory)])

 self.progress_bar.setRange(0, num_of_files)

Directories in this application can only be selected by using the chooseDirectory()

slot. We are also able to set the max range of the QProgressBar using the total number of

files in the directory.

Renaming the files could take place in the main thread. This wouldn’t be a problem

for a few files. However, if the user wants to work with a large number of files, this

would cause the GUI to be locked until the operations are finished. Therefore, the

process for renaming the files, along with updating the progress bar and the text edit

widgets, is performed in the worker thread. An instance of the Worker class is created in

Listing 15-8.

Listing 15-8. Code for the renameFiles() slot that creates the worker thread

file_rename_threading.py

 def renameFiles(self):

 """Create instance of worker thread to handle

 the file renaming process."""

 prefix_text = self.change_name_edit.text()

Chapter 15 Managing threads

449

 if self.directory != "" and prefix_text != "":

 self.worker = Worker(

 self.directory, self.combo_value, prefix_text)

 self.worker.clear_text_edit_signal.connect(

 self.display_files_tedit.clear)

 self.stop_button.setEnabled(True)

 self.stop_button.repaint()

 self.stop_button.clicked.connect(

 self.worker.stopRunning)

 self.worker.update_value_signal.connect(

 self.updateProgressBar)

 self.worker.update_text_edit_signal.connect(

 self.updateTextEdit)

 self.worker.finished.connect(

 self.worker.deleteLater)

 self.worker.start()

For Listing 15-9, directory, combo_value, and prefix_text are passed to the newly

created worker thread. The worker_clear_text_signal is then connected to display_

files_text instance’s clear() method.

If stop_button is clicked at this point, it will call the Worker class’s stopRunning()

slot, causing the thread to end and resetting the progress bar and text edit. The other

Worker signals are also connected to the slots in Listing 15-9.

QThread also has a finished signal that is emitted when the read stops running. The

finished signal is connected to the QObject method deleteLater(), which is used to

delete the worker object and release objects that were created while the thread was

running.

Listing 15-9. Code for the slots that update widget values

file_rename_threading.py

 def updateComboValue(self, text):

 """Change the combo box value. Values represent

 the different file extensions."""

 self.combo_value = text

 print(self.combo_value)

Chapter 15 Managing threads

450

 def updateProgressBar(self, value):

 self.progress_bar.setValue(value)

 def updateTextEdit(self, old_text, new_text):

 self.display_files_tedit.append(

 f"[INFO] {old_text} changed to {new_text}.")

The updateProgressBar() and updateTextEdit() slots are connected to the worker

thread’s signals.

You can now run the program and locate a local folder. If you find that the process

is too fast and want to see the processes actually running, you can uncomment time.

sleep(1.0) in the Worker class to slow down the process.

 Summary
Preventing GUIs from becoming frozen while processing long operations is important

for a user’s experience. There are a few options for effectively handling blocking in your

application, including using timers and threads. Qt provides a class, QThread, that,

combined with signals and slots, can be used for handling additional processes in GUI

applications. However, you must be careful when using QThread to ensure that threads

protect access to their own data. While not displayed in this chapter’s short project,

QThread also has methods, such as started(), finished(), wait(), and quit(), for

managing threads.

In Chapter 16, we will build multiple example projects to learn and practice a variety

of concepts not covered in previous chapters.

Chapter 15 Managing threads

451
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1_16

CHAPTER 16

Extra Projects
Throughout this book, we have aimed to take a practical approach for creating

applications in order to help you learn the fundamentals of GUI development. As you

continue to use PyQt6 and Python, you will find yourself learning about other modules

and classes that will also prove useful.

In some cases, this book has only scratched the surface of what you can do with

PyQt. With so many modules, classes, and possibilities for customization provided by

Qt, the potential for building GUIs is endless. To expand your experience with PyQt,

this chapter takes a look at some additional Qt classes that we couldn’t fit into earlier

chapters.

In this chapter, you will create projects for

 1. Displaying directories and files using QFileSystemModel and

QTreeView

 2. Making a GUI that takes photos using QCamera and demonstrates

how to make custom dialogs using QDialog

 3. Creating a simple clock GUI with QDate and QTime

 4. Exploring the QCalendarWidget class

 5. Building Hangman with QPainter and other PyQt classes

 6. Building the framework for a web browser using the

QtWebEngineWidgets module

 7. Creating tri-state QComboBox widgets

The explanations for each project will not go into great lengths of detail. Rather, they

will focus on explaining the key points of each program and leave it up to you to research

the details that you are unsure about, either by finding the answers in a different chapter

or by searching online for help.

https://doi.org/10.1007/978-1-4842-7999-1_16

452

 Project 16.1 – Directory Viewer GUI
For every operating system, there needs to be some method for a user to access the data

and files located within it. The drives, directories, and files are stored in a hierarchical file

system and presented to the user so that they only view the files that they are interested

in seeing.

Whether you use a command line interface or a graphical user interface, there needs

to be some way to create, remove, and rename files and directories. However, if you

are already interacting with one interface, it may be more convenient to locate files or

directories that you need in the application’s main window rather than opening new

windows or other programs.

This project shows you how to set up an interface for viewing the files on your

local system. There are two key classes that will be introduced in this project:

QFileSystemModel, which grants you access to the file system on your computer, and

QTreeView, which provides a visual representation of data using a tree-like structure. The

directory viewer application can be seen in Figure 16-1.

Chapter 16 extra projeCts

453

Figure 16-1. Directory viewer displaying the local system’s directories

 Explanation for the Directory Viewer GUI
Begin by using the main_window_template.py script from Chapter 5, and then import

the necessary modules for this GUI. For this project, we will need to use the Model/

View paradigm to view the data on your computer. For more information about Model/

View programming, refer to Chapter 10. The code for the directory viewer is found in

Listing 16-1.

Listing 16-1. Code for the directory viewer GUI

directory_viewer.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QTreeView, QFrame, QFileDialog, QVBoxLayout)

Chapter 16 extra projeCts

454

from PyQt6.QtGui import QFileSystemModel, QAction

class MainWindow(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 400)

 self.setWindowTitle("16.1 – View Directory GUI")

 self.setUpMainWindow()

 self.createActions()

 self.createMenu()

 self.show()

 def setUpMainWindow(self):

 """Set up the QTreeView in the main window to

 display the contents of the local filesystem."""

 self.model = QFileSystemModel()

 self.model.setRootPath("")

 self.tree = QTreeView()

 self.tree.setIndentation(10)

 self.tree.setModel(self.model)

 # Set up container and layout

 frame = QFrame()

 frame_v_box = QVBoxLayout()

 frame_v_box.addWidget(self.tree)

 frame.setLayout(frame_v_box)

 self.setCentralWidget(frame)

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for Directories menu

 self.open_dir_act = QAction("Open Directory...")

Chapter 16 extra projeCts

455

 self.open_dir_act.triggered.connect(

 self.chooseDirectory)

 self.root_act = QAction("Return to Root")

 self.root_act.triggered.connect(

 self.returnToRootDirectory)

 def createMenu(self):

 """Create the application's menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create file menu and add actions

 dir_menu = self.menuBar().addMenu("Directories")

 dir_menu.addAction(self.open_dir_act)

 dir_menu.addAction(self.root_act)

 def chooseDirectory(self):

 """Slot for selecting a directory to display."""

 file_dialog = QFileDialog(self)

 file_dialog.setFileMode(

 QFileDialog.FileMode.Directory)

 directory = file_dialog.getExistingDirectory(

 self, "Open Directory",

 "", QFileDialog.Option.ShowDirsOnly)

 self.tree.setRootIndex(self.model.index(directory))

 def returnToRootDirectory(self):

 """Slot for redisplaying the contents of the root

 directory."""

 self.tree.setRootIndex(self.model.index(""))

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

Chapter 16 extra projeCts

456

The QFileSystemModel class provides the model we need to access data on the local

file system. For PyQt6, this class is now located in QtGui. While not included in this

project, you could also use QFileSystemModel to rename or remove files and directories,

create new directories, or use it with other display widgets as part of a browser.

The QTreeView class will be used to display the contents of the model in a

hierarchical tree view.

For this GUI, we will create a Directories menu with actions that will either let the

user view a specific directory or return back to the root directory. A screenshot of the

menu bar can be seen in Figure 16-2.

Figure 16-2. The menu for the directory viewer GUI

Create an instance of the QFileSystemModel class, model, and set the directory to the

root path by passing an empty string to setRootPath(). You can set a different directory

by passing a different path to setRootPath().

Finally, let’s set the model for the tree object to show the contents of the file system

using setModel(). To choose a different directory, the user can select Open Directory…

from the menu, and a file dialog will appear. A new directory can then be selected in

the chooseDirectory() slot and set as the new root path to be displayed in the tree

object using the QTreeView method setRootIndex().

If a new directory has been selected, you can use the slot, returnToRootDirectory(),

that is triggered by root_act to redisplay the root directory.

 Project 16.2 – Camera GUI
PyQt can do more than handle images, as it also includes modules for working with

videos, audio, and other kinds of media. For this GUI, we’ll create a simple window that

opens your computer’s webcam and displays its contents in a window. If the user presses

the space bar, a custom QDialog appears, displaying the screenshot and prompting the

user to save or reject the video. The main window is shown in Figure 16-3.

Chapter 16 extra projeCts

457

Figure 16-3. The camera GUI

Before beginning this project, make sure your version of PyQt6 is version 6.2 or

higher. The multimedia classes were not included in version 6.1 and earlier. To check

your version of PyQt6, open the Python shell and enter the following commands:

>>> import PyQt6

>>> from PyQt6.QtCore import PYQT_VERSION_STR

>>> print(PYQT_VERSION_STR)

6.2.1

>>> help(PyQt6)

You should see at least 6.2.1 appear as output in the shell. If you don’t, you can

upgrade your version of PyQt6 by running the following command:

$ pip3 install PyQt6 --upgrade

Use pip instead of pip3 on Windows. You can use the Python help() function to get

a list of all of the PyQt6 modules. Look through them and you should see QtMultimedia

listed among the different modules.

Chapter 16 extra projeCts

458

Another way to make sure that the multimedia classes were installed is to open your

Python shell and run the following code:

>>> from PyQt6 import QtMultimedia

Note For those readers using macos, you may have issues running this
application if you are using the Z shell, also known as zsh. the bash shell used to
be the default on macos until recently. If you run into problems due to zsh, you can
switch to using bash by entering chsh -s /bin/bash/ in the command line. If
you want to switch back to zsh when you are finished, you will need to enter the
command chsh -s /bin/zsh. just be aware that when you do switch between
shells, you will also need to install pyQt6 from pypI or edit the paths in bash to
locate pyQt6 and your other python packages.

 Explanation for the Camera GUI
Let’s take a look at how to use the multimedia classes to create a GUI for taking photos in

Listing 16-2. To begin, we’ll use basic_window.py from Chapter 1.

To build a custom dialog that will display the images taken using the webcam, we’ll

need QDialog and QDialogButtonBox from QtWidgets. The widget QDialogButtonBox

is used to easily create and arrange standard buttons in dialog boxes. Have a look in the

Appendix at the “QDialog” subsection for more information about button types.

There have been numerous updates when it comes to the multimedia classes in

PyQt6. The QtMultimedia module provides access to a number of multimedia tools that

can handle audio, videos, and cameras. The QCamera class provides the interface to work

with camera devices. We can use QImageCapture to record or take pictures of media

objects, such as QCamera. QMediaDevices supplies information about available cameras

or audio devices.

From the QtMultimediaWidgets module, the QVideoWidget class sets up and

displays the camera or video object’s output.

Chapter 16 extra projeCts

459

Listing 16-2. Example code that shows how to use the QCamera class and build

custom dialogs

camera.py

Import necessary modules

import os, sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QDialog, QDialogButtonBox, QVBoxLayout)

from PyQt6.QtCore import Qt, QDate

from PyQt6.QtGui import QPixmap

from PyQt6.QtMultimedia import (QCamera, QImageCapture,

 QMediaDevices, QMediaCaptureSession)

from PyQt6.QtMultimediaWidgets import QVideoWidget

class ImageDialog(QDialog):

 def __init__(self, id, image):

 """Custom QDialog that displays the image taken."""

 super().__init__()

 self.id = id

 self.setWindowTitle(f"Image #{id}")

 self.setMinimumSize(400, 300)

 self.pixmap = QPixmap().fromImage(image)

 image_label = QLabel()

 image_label.setPixmap(self.pixmap)

 # Create the buttons that appear in the dialog

 self.button_box = QDialogButtonBox(

 QDialogButtonBox.StandardButton.Save | \

 QDialogButtonBox.StandardButton.Cancel)

 self.button_box.accepted.connect(self.accept)

 self.button_box.rejected.connect(self.reject)

 dialog_v_box = QVBoxLayout()

 dialog_v_box.addWidget(image_label)

 dialog_v_box.addWidget(self.button_box)

 self.setLayout(dialog_v_box)

Chapter 16 extra projeCts

460

 def accept(self):

 """Reimplement accept() method to save the image

 file in the images directory."""

 file_format = "png"

 today = QDate().currentDate().toString(

 Qt.DateFormat.ISODate)

 file_name = f"images/image{self.id}_{today}.png"

 self.pixmap.save(file_name, file_format)

 super().accept()

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 400)

 self.setWindowTitle("16.2 - Camera GUI")

 self.setUpMainWindow()

 self.show()

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 # Create the image output directory

 exists = os.path.exists("images")

 if not exists:

 os.makedirs("images")

 info_label = QLabel(

 "Press 'Spacebar' to take pictures.")

 info_label.setAlignment(Qt.AlignmentFlag.AlignCenter)

 # Create the camera that uses the computer's

 # default camera

 self.camera = QCamera(

 QMediaDevices.defaultVideoInput())

Chapter 16 extra projeCts

461

 # Create an instance of the class used to capture

 # images

 self.image_capture = QImageCapture(self.camera)

 self.image_capture.imageCaptured.connect(

 self.viewImage)

 video_widget = QVideoWidget(self)

 # QMediaCaptureSession handles playing and capturing

 # video and audio

 self.media_capture_session = QMediaCaptureSession()

 self.media_capture_session.setCamera(self.camera)

 self.media_capture_session.setImageCapture(

 self.image_capture)

 self.media_capture_session.setVideoOutput(

 video_widget)

 self.camera.start()

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(info_label)

 main_v_box.addWidget(video_widget, 1)

 self.setLayout(main_v_box)

 def viewImage(self, id, preview):

 """Open a dialog to preview the image."""

 self.image_dialog = ImageDialog(id, preview)

 self.image_dialog.open()

 def keyPressEvent(self, event):

 """Reimplement to capture the image when the space

 bar is pressed."""

 if event.key() == Qt.Key.Key_Space:

 self.image_capture.capture()

 def closeEvent(self, event):

 if self.camera.isActive():

 self.camera.stop()

 event.accept()

Chapter 16 extra projeCts

462

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

In order to create a customized dialog, you’ll need to create a new class that inherits

QDialog. An instance of ImageDialog will display the image taken from the camera on

a QLabel. The argument id refers to the id value returned by QImageCapture when a

picture is taken. Since QImageCapture also returns a QImage object, we’ll need to change

image to a pixmap using the QPixmap method fromImage() before setting the picture on

the label.

The button_box instance is a QDialogButtonBox that contains Save and Cancel

keys. The two buttons are added to button_box and separated by a pipe key, |. When

a button is clicked, it emits a signal. Generally, those signals are accepted or rejected

when working with dialog buttons. We’ll attach those signals to built-in slots, accept()

and reject(). While these are standard slots, you could also connect the accepted or

rejected signals to custom slots and perform other operations. We’ll do just that for

accept() but use the default functionality for reject().

For this example, we’ll reimplement accept() to save the pixmap to a folder called

images. The file extension, .png, still needs to be included to avoid issues with saving

images (especially on Windows).

An example of ImageDialog along with its buttons can be seen in Figure 16-4.

Chapter 16 extra projeCts

463

Figure 16-4. A custom QDialog instance that displays the image taken by
the camera

The last step is to arrange the widgets in a layout just like you normally do with other

windows.

Moving on to setUpMainWindow() in the MainWindow class, let’s first create the images

directory for saving images if it does not already exist. The window consists of a label for

providing instructions and a QVideoWidget object for showing the camera’s contents.

QMediaDevices can be used to specify a camera to use or provide a list of possible

devices to the user. For cameras, we’ll need to use QCameraDevice to detect available

cameras. The QMediaDevices method defaultVideoInput() locates a computer’s

default QCameraDevice. You can then pass that camera device to QCamera when creating

the camera instance.

Using QImageCapture, the user is able to take pictures. The imageCaptured signal

is used to detect when a picture is taken. Image capturing for this GUI is handled by

keyPressEvent(). When the space bar is pressed, QImageCapture.capture() takes

a picture, thereby emitting the imageCaptured signal. This calls ViewImage(), where

the picture’s id and QImage object, preview, are passed to an ImageDialog instance.

Chapter 16 extra projeCts

464

The open() method is used to open the dialog. If the user clicks the Save button, the

image is converted to a pixmap and saved in the images folder (handled in the accept()

slot of ImageDialog).

Back in setUpMainWindow(), QMediaCaptureSession will manage the capturing of

the camera that is displayed in video_widget.

 Project 16.3 – Simple Clock GUI
PyQt6 also provides classes for dealing with dates, QDate, or time, QTime. The QDateTime

class supplies functions for working with both dates and time. All three of these classes

include methods for handling time-related features.

Let’s take a brief look at the QDateTime class. The following snippet of code

creates an instance of QDateTime that prints the current date and time using the

currentDateTime() method:

now = QDateTime.currentDateTime()

print(now.toString("MMMM dd, yyyy hh:mm:ss AP”))

The current date and time is printed to the screen with the following format:

November 07, 2021 03:34:11 PM

This format is used to display the time in GUI in Figure 16-5.

Figure 16-5. The clock GUI displaying the current calendar date and clock time

In PyQt6, you can also use the enum Qt.DateFormat to utilize standard date and

time format types. These include ISO 8601 format (using the flag ISODate) and RFC

2822 (using the flag RFC2822Date). The toString() method returns the date and time

as a string. QDateTime also handles daylight saving time, different time zones, and the

manipulation of times and dates such as adding or subtracting months, days, or hours.

Chapter 16 extra projeCts

465

If you only need to work with the individual dates and times, QDate and QTime also

provide similar functions as you shall see in the following example.

 Explanation for the Clock GUI
We’ll use the basic_window.py from Chapter 1 as the base for this program. Start by

importing the necessary modules, including QDate, QTime, and QTimer from the QtCore

module in Listing 16-3.

The QTimer class will be used to create a timer object to keep track of the time that

has passed and update the labels that hold the date and time accordingly. The timer is

set up in initializeUI(), and its timeout signal is connected to the updateDateTime()

slot. The timeout signal is emitted every second.

Listing 16-3. Code for the clock GUI

clock.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QVBoxLayout)

from PyQt6.QtCore import Qt, QDate, QTime, QTimer

class DisplayTime(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setGeometry(100, 100, 250, 100)

 self.setWindowTitle("16.3 – QDateTime Example")

 self.setStyleSheet("background-color: black")

 self.setUpMainWindow()

Chapter 16 extra projeCts

466

 # Create timer object

 timer = QTimer(self)

 timer.timeout.connect(self.updateDateTime)

 timer.start(1000)

 self.show()

 def setUpMainWindow(self):

 """Create labels that will display current date and

 time in the main window."""

 current_date, current_time = self.getDateTime()

 self.date_label = QLabel(current_date)

 self.date_label.setStyleSheet(

 "color: white; font: 16px Courier")

 self.time_label = QLabel(current_time)

 self.time_label.setStyleSheet(

 """color: white;

 border-color: white;

 border-width: 2px;

 border-style: solid;

 border-radius: 4px;

 padding: 10px;

 font: bold 24px Courier""")

 # Create layout and add widgets

 v_box = QVBoxLayout()

 v_box.addWidget(self.date_label,

 alignment=Qt.AlignmentFlag.AlignCenter)

 v_box.addWidget(self.time_label,

 alignment=Qt.AlignmentFlag.AlignCenter)

 self.setLayout(v_box)

 def getDateTime(self):

 """Returns current date and time."""

 date = QDate.currentDate().toString("MMMM dd, yyyy")

 time = QTime.currentTime().toString("hh:mm:ss AP")

 return date, time

Chapter 16 extra projeCts

467

 def updateDateTime(self):

 """Slot that updates date and time values."""

 date = QDate.currentDate().toString("MMMM dd, yyyy")

 time = QTime.currentTime().toString("hh:mm:ss AP")

 self.date_label.setText(date)

 self.time_label.setText(time)

 return date, time

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = DisplayTime()

 sys.exit(app.exec())

In order to get the current date and time, the values are retrieved using the

currentDate() and currentTime() methods in the getDateTime() method. These are

then returned and set as the current_date and current_time.

The values for date and time are both set using a sequence of characters to create a

format string. For date, we’ll present the full month’s name (MMMM), the day (dd), and the

full year (yyyy). The time instance will display hours (hh), minutes (mm), seconds (ss),

and AM or PM (AP).

The labels that will display the date and time are then instantiated, styled, and added

to the layout in setUpMainWindow(). The values of the labels are updated using the

updateDateTime() slot that is connected to timer.

 Project 16.4 – Calendar GUI
This project takes a look at how to set up the QCalendarWidget class and use a few of its

functions. PyQt makes adding a monthly calendar to your applications rather effortless.

The calendar can be seen in Figure 16-6.

Chapter 16 extra projeCts

468

Figure 16-6. The calendar GUI that displays the calendar, the current date, and
the widgets that allow the user to search for dates within a specified time range

The QCalendarWidget class provides a calendar that already has a number of other

useful widgets and functions built-in. For example, the calendar already includes a

horizontal header that includes widgets for changing the month and the year and a

vertical header that displays the week number. The class also includes signals that are

emitted whenever the dates, months, and years on the calendar are changed. The look

of your calendar will vary depending upon the platform that you are using to run the

application.

The QDateEdit widget is used in this application to restrict the date range a user can

select, specified by minimum and maximum values.

 Explanation for the Calendar GUI
We can start with basic_window.py script from Chapter 1. After importing the modules

needed for the calendar GUI in Listing 16-4, the styles for the QLabel and QGroupBox

widgets are prepared using style_sheet.

Chapter 16 extra projeCts

469

Listing 16-4. The calendar GUI code

calendar.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget, QLabel,

 QCalendarWidget, QDateEdit, QGroupBox, QHBoxLayout,

 QGridLayout)

from PyQt6.QtCore import Qt, QDate

style_sheet = """

 QLabel{

 padding: 5px;

 font: 18px

 }

 QLabel#DateSelected{

 font: 24px

 }

 QGroupBox{

 border: 2px solid gray;

 border-radius: 5px;

 margin-top: 1ex;

 font: 14px

 }

"""

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(500, 400)

 self.setWindowTitle("16.4 – Calendar GUI")

Chapter 16 extra projeCts

470

 self.setUpMainWindow()

 self.show()

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.calendar = QCalendarWidget()

 self.calendar.setGridVisible(True)

 self.calendar.setMinimumDate(QDate(1900, 1, 1))

 self.calendar.setMaximumDate(QDate(2200, 1, 1))

 # Connect to newDateSelection() slot when currently

 # selected date is changed

 self.calendar.selectionChanged.connect(

 self.newDateSelection)

 current = QDate.currentDate().toString(

 "MMMM dd, yyyy")

 self.current_label = QLabel(current)

 self.current_label.setObjectName("DateSelected")

 # Create current, minimum, and maximum QDateEdit

 # widgets

 min_date_label = QLabel("Minimum Date:")

 self.min_date_edit = QDateEdit()

 self.min_date_edit.setDisplayFormat("MMM d yyyy")

 self.min_date_edit.setDateRange(

 self.calendar.minimumDate(),

 self.calendar.maximumDate())

 self.min_date_edit.setDate(

 self.calendar.minimumDate())

 self.min_date_edit.dateChanged.connect(

 self.minDatedChanged)

 current_date_label = QLabel("Current Date:")

 self.current_date_edit = QDateEdit()

 self.current_date_edit.setDisplayFormat("MMM d yyyy")

 self.current_date_edit.setDate(

 self.calendar.selectedDate())

Chapter 16 extra projeCts

471

 self.current_date_edit.setDateRange(

 self.calendar.minimumDate(),

 self.calendar.maximumDate())

 self.current_date_edit.dateChanged.connect(

 self.selectionDateChanged)

 max_date_label = QLabel("Maximum Date:")

 self.max_date_edit = QDateEdit()

 self.max_date_edit.setDisplayFormat("MMM d yyyy")

 self.max_date_edit.setDateRange(

 self.calendar.minimumDate(),

 self.calendar.maximumDate())

 self.max_date_edit.setDate(

 self.calendar.maximumDate())

 self.max_date_edit.dateChanged.connect(

 self.maxDatedChanged)

 # Add widgets to group box and add to grid layout

 dates_gb = QGroupBox("Set Dates")

 dates_grid = QGridLayout()

 dates_grid.addWidget(self.current_label, 0, 0, 1, 2,

 Qt.AlignmentFlag.AlignAbsolute)

 dates_grid.addWidget(min_date_label, 1, 0)

 dates_grid.addWidget(self.min_date_edit, 1, 1)

 dates_grid.addWidget(current_date_label, 2, 0)

 dates_grid.addWidget(self.current_date_edit, 2, 1)

 dates_grid.addWidget(max_date_label, 3, 0)

 dates_grid.addWidget(self.max_date_edit, 3, 1)

 dates_gb.setLayout(dates_grid)

 # Create and set main window's layout

 main_h_box = QHBoxLayout()

 main_h_box.addWidget(self.calendar)

 main_h_box.addWidget(dates_gb)

 self.setLayout(main_h_box)

Chapter 16 extra projeCts

472

 def selectionDateChanged(self, date):

 """Update current_date_edit when the calendar's

 selected date changes. """

 self.calendar.setSelectedDate(date)

 def minDatedChanged(self, date):

 """Update the calendar's minimum date.

 Update max_date_edit to avoid conflicts with

 maximum and minimum dates."""

 self.calendar.setMinimumDate(date)

 self.max_date_edit.setDate(

 self.calendar.maximumDate())

 def maxDatedChanged(self, date):

 """Update the calendar's maximum date.

 Update min_date_edit to avoid conflicts with

 minimum and maximum dates."""

 self.calendar.setMaximumDate(date)

 self.min_date_edit.setDate(

 self.calendar.minimumDate())

 def newDateSelection(self):

 """Update date in current_label and current_date_edit

 widgets when a new date is selected."""

 date = self.calendar.selectedDate().toString(

 "MMMM dd, yyyy")

 self.current_date_edit.setDate(

 self.calendar.selectedDate())

 self.current_label.setText(date)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = MainWindow()

 sys.exit(app.exec())

Creating an instance of QCalendarWidget is very simple.

 self.calendar = QCalendarWidget()

Chapter 16 extra projeCts

473

Next, we set a few of the calendar object’s parameters. Setting setGridVisible()

to True will make the grid lines visible. In order to specify the date range that a user

can select in the calendar, we set the minimum and maximum date values using the

QCalendar methods setMinimumDate() and setMaximumDate().

Whenever a date is selected in the calendar widget, it emits a selectionChanged

signal. This signal is connected to the newDateSelection() slot that updates the date

on current_label and in current_date_edit. Selecting a value in current_date_edit

widget will also change the other values.

The QCalendarWidget class also has a number of functions that allow you to

configure its behaviors and appearance. For this project, we create three QDateEdit

widgets that will allow the user to change the minimum and maximum values for the

date range, as well as the current date selected in the calendar. These widgets can be

seen on the right side of the GUI in Figure 16-6.

A displayed format for the date in the QDateEdit widget can be set using

setDisplayFormat(). The date edit objects are also given a date range using

setDateRange(). The following line of code is an example of how to set the min_date_

edit widget’s date range by using ranges set earlier for the calendar object:

 self.min_date_edit.setDateRange(

 self.calendar.minimumDate(),

 self.calendar.maximumDate())

When a date is changed in a date edit widget, it generates a dateChanged signal. Each

one of the QDateEdit widgets is connected to a corresponding slot that will update the

calendar’s minimum, maximum, or current date values depending upon which date edit

widget is changed. The method for changing the dates is adapted from the Qt document

website.1

Finally, the label and date edit widgets are arranged in a QGroupBox, added to a

QGridLayout instance, and nested into the main window’s layout in setUpMainWindow().

 Project 16.5 – Hangman GUI
PyQt can be used to create a variety of different kinds of applications. Throughout

this book, we have looked at quite a few ideas for building GUIs. For this next project,

1 Link: https://doc.qt.io/qt-6/qtwidgets-widgets-calendarwidget-example.html

Chapter 16 extra projeCts

https://doc.qt.io/qt-6/qtwidgets-widgets-calendarwidget-example.html

474

we will take a look at how to use QPainter and a few other classes to build a game –

Hangman. While Hangman is a simple game to play, it can be used to teach a few of the

fundamental concepts for using PyQt to create games. The Hangman interface can be

seen in Figure 16-7.

Figure 16-7. The Hangman application. Can you save him?

For this application, the player can select from one of the 26 English letters to guess

a letter in an unknown word. As each letter is chosen, they will become disabled in

the window. If the letter is correct, it will be revealed to the player. Otherwise, a part

of the Hangman figure’s body is drawn on the screen. If all of the letters are correctly

guessed, then the player wins. There are a total of six turns. Whether or not the player

wins or loses, a dialog will be displayed to inform the player and allow them to quit or to

continue playing.

Be sure to download words.txt from the files folder in the GitHub repository

before beginning this project.

Chapter 16 extra projeCts

475

 Explanation for the Hangman GUI
A variety of classes are used in the Hangman GUI in Listing 16-5, including different

widgets from QtWidgets, as well as classes used for drawing from QtCore and QtGui.

The style sheet used is to change the style properties of the widgets and to handle the

appearance of the buttons when they are pressed.

Listing 16-5. Code for the Hangman GUI

hangman.py

Import necessary modules

import sys, random

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QPushButton, QLabel, QFrame, QButtonGroup,

 QHBoxLayout, QVBoxLayout, QMessageBox, QSizePolicy)

from PyQt6.QtCore import Qt, QRect, QLine

from PyQt6.QtGui import QPainter, QPen, QBrush, QColor

style_sheet = """

 QWidget{

 background-color: #FFFFFF

 }

 QLabel#Word{

 font: bold 20px;

 qproperty-alignment: AlignCenter

 }

 QPushButton#Letters{

 background-color: #1FAEDE;

 color: #D2DDE1;

 border-style: solid;

 border-radius: 3px;

 border-color: #38454A;

 font: 28px

 }

Chapter 16 extra projeCts

476

 QPushButton#Letters:pressed{

 background-color: #C86354;

 border-radius: 4px;

 padding: 6px;

 color: #DFD8D7

 }

 QPushButton#Letters:disabled{

 background-color: #BBC7CB

 }

"""

class DrawingLabel(QLabel):

 def __init__(self):

 """The hangman is drawn on a QLabel object, rather

 than on the main window. This class handles the

 drawing."""

 super().__init__()

 self.height = 200

 self.width = 300

 self.incorrect_letter = False

 self.incorrect_turns = 0

 self.wrong_parts_list = []

 def drawHangmanBackground(self, painter):

 """Draw the gallows for the GUI."""

 painter.setBrush(QBrush(QColor("#000000")))

 # drawRect(x, y, width, height)

 painter.drawRect(int(self.width / 2) - 40,

 self.height, 150, 4)

 painter.drawRect(int(self.width / 2), 0, 4, 200)

 painter.drawRect(int(self.width / 2), 0, 60, 4)

 painter.drawRect(int(self.width / 2) + 60, 0, 4, 40)

 def drawHangmanBody(self, painter):

 """Create and draw body parts for hangman."""

Chapter 16 extra projeCts

477

 if "head" in self.wrong_parts_list:

 head = QRect(int(self.width / 2) + 42, 40, 40, 40)

 painter.setPen(QPen(QColor("#000000"), 3))

 painter.setBrush(QBrush(QColor("#FFFFFF")))

 painter.drawEllipse(head)

 if "body" in self.wrong_parts_list:

 body = QRect(int(self.width / 2) + 60, 80, 2, 55)

 painter.setBrush(QBrush(QColor("#000000")))

 painter.drawRect(body)

 if "right_arm" in self.wrong_parts_list:

 right_arm = QLine(int(self.width / 2) + 60, 85,

 int(self.width / 2) + 50,

 int(self.height / 2) + 30)

 pen = QPen(Qt.GlobalColor.black, 3,

 Qt.PenStyle.SolidLine)

 painter.setPen(pen)

 painter.drawLine(right_arm)

 if "left_arm" in self.wrong_parts_list:

 left_arm = QLine(int(self.width / 2) + 62, 85,

 int(self.width / 2) + 72,

 int(self.height / 2) + 30)

 painter.drawLine(left_arm)

 if "right_leg" in self.wrong_parts_list:

 right_leg = QLine(int(self.width / 2) + 60, 135,

 int(self.width / 2) + 50,

 int(self.height / 2) + 75)

 painter.drawLine(right_leg)

 if "left_leg" in self.wrong_parts_list:

 left_leg = QLine(int(self.width / 2) + 62, 135,

 int(self.width / 2) + 72,

 int(self.height / 2) + 75)

 painter.drawLine(left_leg)

 # Reset variable

 self.incorrect_letter = False

Chapter 16 extra projeCts

478

 def paintEvent(self, event):

 """Create QPainter object and handle painting

 events."""

 painter = QPainter()

 painter.begin(self)

 self.drawHangmanBackground(painter)

 if self.incorrect_letter == True:

 self.drawHangmanBody(painter)

 painter.end()

class Hangman(QMainWindow):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setFixedSize(400, 500)

 self.setWindowTitle("16.5 - Hangman GUI")

 self.newGame()

 self.show()

 def newGame(self):

 """Create new Hangman game. Sets up the objects

 for the main window."""

 self.setUpHangmanBoard()

 self.setUpWord()

 self.setUpBoard()

 def setUpHangmanBoard(self):

 """Set up label object to display hangman."""

 self.hangman_label = DrawingLabel()

 self.hangman_label.setSizePolicy(

 QSizePolicy.Policy.Expanding,

 QSizePolicy.Policy.Expanding)

Chapter 16 extra projeCts

479

 def setUpWord(self):

 """Open words file and choose random word.

 Create labels that will display '_' depending

 upon length of word."""

 words = self.openFile()

 self.chosen_word = random.choice(words).upper()

 #print(self.chosen_word)

 # Keep track of correct guesses

 self.correct_counter = 0

 # Keep track of label objects.

 # Is used for updating the text on the labels

 self.labels = []

 word_h_box = QHBoxLayout()

 for letter in self.chosen_word:

 self.letter_label = QLabel("___")

 self.labels.append(self.letter_label)

 self.letter_label.setObjectName("Word")

 word_h_box.addWidget(self.letter_label)

 self.word_frame = QFrame()

 self.word_frame.setLayout(word_h_box)

 def setUpBoard(self):

 """Set up objects and layouts for keyboard and main

 window."""

 top_row_list = ["A", "B", "C", "D", "E",

 "F", "G", "H"]

 mid_row_list = ["I", "J", "K", "L", "M",

 "N", "O", "P", "Q"]

 bot_row_list = ["R", "S", "T", "U", "V",

 "W", "X", "Y", "Z"]

 # Create buttongroup to keep track of letters

 self.keyboard_bg = QButtonGroup()

Chapter 16 extra projeCts

480

 # Set up keys in the top row

 top_row_h_box = QHBoxLayout()

 for letter in top_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 top_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

 top_frame = QFrame()

 top_frame.setLayout(top_row_h_box)

 # Set up keys in the middle row

 mid_row_h_box = QHBoxLayout()

 for letter in mid_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 mid_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

 mid_frame = QFrame()

 mid_frame.setLayout(mid_row_h_box)

 # Set up keys in the bottom row

 bot_row_h_box = QHBoxLayout()

 for letter in bot_row_list:

 button = QPushButton(letter)

 button.setObjectName("Letters")

 bot_row_h_box.addWidget(button)

 self.keyboard_bg.addButton(button)

 bot_frame = QFrame()

 bot_frame.setLayout(bot_row_h_box)

 # Connect buttons in button group to slot

 self.keyboard_bg.buttonClicked.connect(

 self.buttonPushed)

Chapter 16 extra projeCts

481

 keyboard_v_box = QVBoxLayout()

 keyboard_v_box.addWidget(top_frame)

 keyboard_v_box.addWidget(mid_frame)

 keyboard_v_box.addWidget(bot_frame)

 keyboard_frame = QFrame()

 keyboard_frame.setLayout(keyboard_v_box)

 # Create main layout and add widgets

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(self.hangman_label)

 main_v_box.addWidget(self.word_frame)

 main_v_box.addWidget(keyboard_frame)

 # Create central widget for main window

 central_widget = QWidget()

 central_widget.setLayout(main_v_box)

 self.setCentralWidget(central_widget)

 def buttonPushed(self, button):

 """Handle buttons from the button group and

 game logic."""

 button.setEnabled(False)

 body_parts_list = ["head", "body", "right_arm",

 "left_arm", "right_leg", "left_leg"]

 # When the user guesses incorrectly and the number of

 # incorrect turns is not equal to 6 (the number of

 # body parts)

 if button.text() not in self.chosen_word and \

 self.hangman_label.incorrect_turns <= 5:

 self.hangman_label.incorrect_turns += 1

 index = self.hangman_label.incorrect_turns - 1

 self.hangman_label.wrong_parts_list.append(

 body_parts_list[index])

 self.hangman_label.incorrect_letter = True

Chapter 16 extra projeCts

482

 # When a correct letter is chosen, update labels and

 # correct counter

 elif button.text() in self.chosen_word and \

 self.hangman_label.incorrect_turns <= 5:

 self.hangman_label.incorrect_letter = True

 for i in range(len(self.chosen_word)):

 if self.chosen_word[i] == button.text():

 self.labels[i].setText(button.text())

 self.correct_counter += 1

 # Call update before checking winning conditions

 self.update()

 # User wins when the number of correct letters equals

 # the length of the word

 if self.correct_counter == len(self.chosen_word):

 self.displayDialogs("win")

 # Game over if number of incorrect turns equals

 # the number of body parts. Reveal word to user

 if self.hangman_label.incorrect_turns == 6:

 for i in range(len(self.chosen_word)):

 self.labels[i].setText(self.chosen_word[i])

 self.displayDialogs("game_over")

 def openFile(self):

 """Open words.txt file."""

 try:

 with open("files/words.txt", 'r') as f:

 word_list = f.read().splitlines()

 return word_list

 except FileNotFoundError:

 print("File Not Found.")

 ex_list = ["nofile"]

 return ex_list

 def displayDialogs(self, text):

 """Display win and game over dialog boxes."""

Chapter 16 extra projeCts

483

 if text == "win":

 message = QMessageBox().question(self, "Win!",

 "You Win!\nNEW GAME?",

 QMessageBox.StandardButton.Yes | \

 QMessageBox.StandardButton.No,

 QMessageBox.StandardButton.No)

 elif text == "game_over":

 message = QMessageBox().question(

 self, "Game Over",

 "Game Over\nNEW GAME?",

 QMessageBox.StandardButton.Yes | \

 QMessageBox.StandardButton.No,

 QMessageBox.StandardButton.No)

 if message == QMessageBox.StandardButton.No:

 self.close()

 else:

 self.newGame()

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

 window = Hangman()

 sys.exit(app.exec())

This program contains two classes: DrawingLabel and Hangman.

 Creating the Drawing Class

The DrawingLabel class inherits from QLabel and handles the different paint events that

will be drawn on the label object in the main window. The paintEvent() function is

called in a class that inherits from QLabel so that way the paint events occur on the label

and are not covered up by the main window.

In order to use the DrawingLabel() class, an instance is created in the Hangman class

method setupHangmanBoard():

 self.hangman_label = DrawingLabel()

Chapter 16 extra projeCts

484

The paintEvent() function sets up QPainter and handles the two painting methods:

drawHangmanBackground(), which draws the gallows of the Hangman game onto the

label, and drawHangmanBody(), which only draws the body parts if they are contained in

the part_list.

 Creating the Main Window Class

The Hangman class starts by initializing the GUI window and calling the newGame()

method. First, the Hangman board is created as an instance of the DrawingLabel class.

Then, setUpBoard() selects a random word from the words.txt file. The labels that

will represent the letters of the chosen word are replaced with underscore characters,

appended to the labels list, and added to the horizontal layout of the word_frame object.

Finally, we need to set up the keyboard push buttons, layouts, and the game logic in

setUpBoard(). Three rows of push buttons that represent the letters of the alphabet are

controlled by one QButtonGroup object, keyboard_bg.

When one button is pushed, it generates a signal that calls the buttonPushed() slot.

When a push button is pressed, it is disabled by passing False to setEnabled().

The list of body parts, body_parts_list, contains the six body part names. If the

player guesses an incorrect letter, the name is appended to the wrong_parts_list

and checked for in the DrawingLabel method drawHangmanBody() function. Using

this method ensures that all necessary parts are drawn with their different styles when

paintEvent() is called. Otherwise, the labels are updated to display the correct letters in

the appropriate positions if the player guesses correctly.

If the player wins or loses, a QMessageBox will appear and allow the user to close the

application or continue. If Yes is selected, newGame() is called.

 Project 16.6 – Web Browser GUI
A web browser is a graphical user interface that allows access to information on the

World Wide Web. A user can enter a Uniform Resource Locator (URL) into an address

bar and request content for a website from a web server to be displayed on their local

device, including text, image, and video data. URLs are generally prefixed with http, a

protocol used for fetching and transmitting requested web pages, or https, for encrypted

communication between browsers and websites.

Chapter 16 extra projeCts

485

Qt provides quite a few classes for network communication, WebSockets, support

for accessing the World Wide Web, and more. This project introduces PyQt’s classes for

adding web integration into GUIs.

For the following project, we will take a look at Qt’s WebEngine core classes,

specifically the QtWebEngineWidgets module for creating widget-based web

applications. The WebEngine core classes provide a web browser engine that can be

used to embed web content into your applications. The QtWebEngineCore module uses

Chromium as its back end. Chromium is an open source software from Google that can

be used to create web browsers.

The web browser GUI that we will create in Figure 16-8 serves as a framework for

creating your own web browser and includes the following features:

• Ability to open multiple windows and tabs, either by using the

application’s menu or shortcut hotkeys

• A navigation bar that is made up of back, forward, refresh, stop and

home buttons, and the address bar for entering URLs

• The web engine view widget created using QWebEngineView

• A status bar

• A progress bar that relays feedback to the user about loading

web pages

Chapter 16 extra projeCts

486

Figure 16-8. The web browser GUI displaying the menu bar, toolbar, different
tabs, the logo for my blog, redhuli.io, and the progress bar at the bottom

Note You will need to install the QtWebEngineWidgets module. to do so,
enter the following command into the command line: pip3 install PyQt6-
WebEngine (use pip for Windows).

In addition, make sure that you download the icons folder from this chapter’s

GitHub repository.

 Explanation for Web Browser GUI
You can begin with main_window_template.py from Chapter 5 as your foundation

for this application. Two new classes are introduced in Listing 16-6: QUrl is used for

managing and constructing URLs, and QWebEngineView is used for creating the main

component for rendering content from the Web, the web engine view (denoted as web_

view in the code).

Chapter 16 extra projeCts

487

Listing 16-6. Code for the web browser GUI

web_browser.py

Import necessary modules

import os, sys

from PyQt6.QtWidgets import (QApplication, QMainWindow,

 QWidget, QLabel, QLineEdit, QTabWidget, QToolBar,

 QProgressBar, QStatusBar, QVBoxLayout)

from PyQt6.QtCore import QSize, QUrl

from PyQt6.QtGui import QIcon, QAction

from PyQt6.QtWebEngineWidgets import QWebEngineView

style_sheet = """

 QTabWidget:pane{

 border: none

 }

"""

class WebBrowser(QMainWindow):

 def __init__(self):

 super().__init__()

 # Create lists that will keep track of the new

 # windows, tabs and urls

 self.window_list = []

 self.list_of_web_pages = []

 self.list_of_urls = []

 self.initializeUI()

 def initializeUI(self):

 self.setMinimumSize(300, 200)

 self.setWindowTitle("16.6 – Web Browser")

 self.setWindowIcon(QIcon(os.path.join("icons",

 "pyqt_logo.png")))

 self.sizeMainWindow()

 self.createToolbar()

 self.setUpMainWindow()

Chapter 16 extra projeCts

488

 self.createActions()

 self.createMenu()

 self.show()

 def setUpMainWindow(self):

 """Create the QTabWidget object and the different

 pages for the main window. Handle when a tab is

 closed."""

 self.tab_bar = QTabWidget()

 # Add close buttons to tabs

 self.tab_bar.setTabsClosable(True)

 # Hides tab bar when less than 2 tabs

 self.tab_bar.setTabBarAutoHide(True)

 self.tab_bar.tabCloseRequested.connect(self.closeTab)

 # Create a tab

 self.main_tab = QWidget()

 self.tab_bar.addTab(self.main_tab, "New Tab")

 # Call method that sets up each page

 self.setUpTab(self.main_tab)

 self.setCentralWidget(self.tab_bar)

 self.status_bar = QStatusBar()

 self.setStatusBar(self.status_bar)

 def createActions(self):

 """Create the application's menu actions."""

 # Create actions for File menu

 self.new_window_act = QAction("New Window", self)

 self.new_window_act.setShortcut("Ctrl+N")

 self.new_window_act.triggered.connect(

 self.openNewWindow)

 self.new_tab_act = QAction("New Tab", self)

 self.new_tab_act.setShortcut("Ctrl+T")

 self.new_tab_act.triggered.connect(self.openNewTab)

Chapter 16 extra projeCts

489

 self.quit_act = QAction("Quit Browser", self)

 self.quit_act.setShortcut("Ctrl+Q")

 self.quit_act.triggered.connect(self.close)

 def createMenu(self):

 """Create the application"s menu bar."""

 self.menuBar().setNativeMenuBar(False)

 # Create File menu and add actions

 file_menu = self.menuBar().addMenu("File")

 file_menu.addAction(self.new_window_act)

 file_menu.addAction(self.new_tab_act)

 file_menu.addSeparator()

 file_menu.addAction(self.quit_act)

 def createToolbar(self):

 """Set up the navigation toolbar."""

 tool_bar = QToolBar("Address Bar")

 tool_bar.setIconSize(QSize(30, 30))

 self.addToolBar(tool_bar)

 # Create toolbar actions

 back_page_button = QAction(

 QIcon(os.path.join("icons", "back.png")),

 "Back", self)

 back_page_button.triggered.connect(

 self.backPageButton)

 forward_page_button = QAction(

 QIcon(os.path.join("icons", "forward.png")),

 "Forward", self)

 forward_page_button.triggered.connect(

 self.forwardPageButton)

 refresh_button = QAction(

 QIcon(os.path.join("icons", "refresh.png")),

 "Refresh", self)

 refresh_button.triggered.connect(self.refreshButton)

Chapter 16 extra projeCts

490

 home_button = QAction(

 QIcon(os.path.join("icons", "home.png")),

 "Home", self)

 home_button.triggered.connect(self.homeButton)

 stop_button = QAction(

 QIcon(os.path.join("icons", "stop.png")),

 "Stop", self)

 stop_button.triggered.connect(self.stopButton)

 # Set up the address bar

 self.address_line = QLineEdit()

 # addAction() is used here to merely display the icon

 # in the line edit

 self.address_line.addAction(

 QIcon("icons/search.png"),

 QLineEdit.ActionPosition.LeadingPosition)

 self.address_line.setPlaceholderText(

 "Enter website address")

 self.address_line.returnPressed.connect(

 self.searchForUrl)

 tool_bar.addAction(home_button)

 tool_bar.addAction(back_page_button)

 tool_bar.addAction(forward_page_button)

 tool_bar.addAction(refresh_button)

 tool_bar.addWidget(self.address_line)

 tool_bar.addAction(stop_button)

 def setUpWebView(self):

 """Create the QWebEngineView object that is used to

 view web docs. Set up the main page, and handle

 web_view signals."""

 web_view = QWebEngineView()

 web_view.setUrl(QUrl("https://google.com"))

 # Create page loading progress bar that is displayed

 # in the status bar.

Chapter 16 extra projeCts

491

 self.page_load_pb = QProgressBar()

 self.page_load_label = QLabel()

 web_view.loadProgress.connect(self.updateProgressBar)

 # Display url in address bar

 web_view.urlChanged.connect(self.updateUrl)

 ok = web_view.loadFinished.connect(

 self.updateTabTitle)

 if ok:

 # Web page loaded

 return web_view

 else:

 print("The request timed out.")

 def setUpTab(self, tab):

 """Create individual tabs and widgets. Add the

 tab"s url and web view to the appropriate list.

 Update the address bar if the user switches tabs."""

 # Create the web view that will be displayed on the

 # page

 self.web_page = self.setUpWebView()

 # Append new web_page and url to the appropriate lists

 self.list_of_web_pages.append(self.web_page)

 self.list_of_urls.append(self.address_line)

 self.tab_bar.setCurrentWidget(self.web_page)

 # If user switches pages, update the url in the

 # address to reflect the current page.

 self.tab_bar.currentChanged.connect(self.updateUrl)

 tab_v_box = QVBoxLayout()

 # Sets the left, top, right, and bottom margins to

 # use around the layout.

 tab_v_box.setContentsMargins(0,0,0,0)

 tab_v_box.addWidget(self.web_page)

 tab.setLayout(tab_v_box)

Chapter 16 extra projeCts

492

 def openNewWindow(self):

 """Create new instance of the WebBrowser class."""

 new_window = WebBrowser()

 new_window.show()

 self.window_list.append(new_window)

 def openNewTab(self):

 """Create a new web tab."""

 new_tab = QWidget()

 self.tab_bar.addTab(new_tab, "New Tab")

 self.setUpTab(new_tab)

 # Update the tab_bar index to keep track of the new

 # tab. Load the url for the new page

 tab_index = self.tab_bar.currentIndex()

 self.tab_bar.setCurrentIndex(tab_index + 1)

 self.list_of_web_pages[

 self.tab_bar.currentIndex()].load(

 QUrl("https://google.com"))

 def updateProgressBar(self, progress):

 """Update progress bar in status bar.

 This provides feedback to the user that page is

 still loading."""

 if progress < 100:

 self.page_load_pb.setVisible(progress)

 self.page_load_pb.setValue(progress)

 self.page_load_label.setVisible(progress)

 self.page_load_label.setText(

 f"Loading Page... ({str(progress)}/100)")

 self.status_bar.addWidget(self.page_load_pb)

 self.status_bar.addWidget(self.page_load_label)

 else:

 self.status_bar.removeWidget(self.page_load_pb)

 self.status_bar.removeWidget(self.page_load_label)

Chapter 16 extra projeCts

493

 def updateTabTitle(self):

 """Update the title of the tab to reflect the

 website."""

 tab_index = self.tab_bar.currentIndex()

 title = self.list_of_web_pages[

 self.tab_bar.currentIndex()].page().title()

 self.tab_bar.setTabText(tab_index, title)

 def updateUrl(self):

 """Update the url in the address to reflect the

 current page being displayed."""

 url = self.list_of_web_pages[

 self.tab_bar.currentIndex()].page().url()

 formatted_url = QUrl(url).toString()

 self.list_of_urls[

 self.tab_bar.currentIndex()].setText(

 formatted_url)

 def searchForUrl(self):

 """Make a request to load a url."""

 url_text = self.list_of_urls[

 self.tab_bar.currentIndex()].text()

 # Append http to url

 url = QUrl(url_text)

 if url.scheme() == "":

 url.setScheme("http")

 # Request url

 if url.isValid():

 self.list_of_web_pages[

 self.tab_bar.currentIndex()].page().load(url)

 else:

 url.clear()

 def backPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].back()

Chapter 16 extra projeCts

494

 def forwardPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].forward()

 def refreshButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].reload()

 def homeButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].setUrl(

 QUrl("https://google.com"))

 def stopButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].stop()

 def closeTab(self, tab_index):

 """Slot is emitted when the close button on a tab is

 clicked. index refers to the tab that should be

 removed."""

 self.list_of_web_pages.pop(tab_index)

 self.list_of_urls.pop(tab_index)

 self.tab_bar.removeTab(tab_index)

 def sizeMainWindow(self):

 """Use QApplication.primaryScreen() to access

 information about the screen and use it to size the

 main window when starting a new application."""

 desktop = QApplication.primaryScreen()

 size = desktop.availableGeometry()

 screen_width = size.width()

 screen_height = size.height()

 self.setGeometry(0, 0, screen_width, screen_height)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 app.setStyleSheet(style_sheet)

Chapter 16 extra projeCts

495

 window = WebBrowser()

 app.exec()

Before calling initializeUI(), we need to instantiate a few lists that will contain

the new windows, web pages viewed, and URLs for each tab. This project also calls

setWindowIcon() to include an application icon, but it will not be displayed on macOS

due to system guidelines.

There are several methods that are called in initializeUI(). The first one is

sizeMainWindow(), which demonstrates how to use QApplication to access information

about the computer’s screen size. The second, createToolbar(), sets up the toolbar

for navigating web pages. Methods createActions() and createMenu() set up the

main menu. The menu includes actions and shortcuts for creating new windows

and new tabs and closing the application. The application’s status bar is created in

setUpMainWindow(), along with the QTabWidget for managing the open web pages.

In the createToolbar() method, the tool_bar instance includes buttons for

navigating between web pages and a QLineEdit widget for entering and displaying URLs.

Each button emits a signal when triggered that is connected to an appropriate slot. For

example, if the back_page_button is pressed, the backPageButton() slot will be called,

which we can see in the following block of code:

 def backPageButton(self):

 tab_index = self.tab_bar.currentIndex()

 self.list_of_web_pages[tab_index].back()

The current index of the tab we are viewing is stored in tab_index. The back()

method is then called on the web_view object for that current tab. If the tab_index is

not 0, then the user can navigate back through previously viewed web pages. The back()

method is but one of several functions included in the QWebEngineView class. Other

methods for navigation include forward(), reload(), and stop(), and these are also

utilized for the other tool_bar buttons.

When the user enters a web address in the QLineEdit widget and presses the return

key, we check to see if the URL begins with the correct scheme (such as http, https,

or file) in searchForUrl(). If a valid scheme is not present, http is appended to the

beginning of the URL. If the URL conforms to standard encoding rules, a request is then

sent to load() the website.

Chapter 16 extra projeCts

496

 Creating Tabs for the Web Browser

The setUpMainWindow() is used to handle creating the tab widget and the web view

objects. First, we need to create the QTabWidget that will display each individual tab’s

web view. Refer back to Chapter 6 for more details on setting up tab widgets.

A few of the tab_bar widget’s parameters are changed so that each tab includes a

close button, and if only one tab remains, then the tab bar will not be displayed. This

helps to make sure that there is always at least one tab in the main window. If a tab is

closed, the closeTab() slot is called. The corresponding URLs and web view items for

that tab are also removed from the list_of_urls and list_of_web_pages lists.

The first tab, main_tab, is created, added to the tab_bar, and then passed to the

setUpTab() method. The tab_bar widget is set as the central widget for the main

window. To set up a tab to display a web page, we first need to create a web view object.

Creating the Web View

The setUpWebView() method creates an instance of the QWebEngineView class, web_view,

and sets the web view’s URL to display the Google web page:

 web_view.setUrl(QUrl("https://google.com"))

To create a basic instance of a web view in an application, you only need to create

a QWebEngineView object, use the load() method to load the web page onto the web

view widget, and then call show(). The following code shows the process for setting up a

simple web view widget.

web_view = QWebEngineView()

web_view.load(QUrl("https://google.com"))

web_view.show()

Once the web page has loaded, the urlChanged signal connected to updateUrl()

changes the URL displayed in address_line. We can use the loadFinished() signal to

tell the current tab to update its title using the updateTabTitle() slot and return the

web_view widget.

Next, create the layout to hold the web view widget, append the current tab’s URL

and web_page object to the list_of_urls and list_of_web_pages lists, and set the

layout for the current tab’s page. The web_page object is the web_view widget that is

returned from setUpWebView() and displayed in the page in setUpTab().

Chapter 16 extra projeCts

497

Finally, to handle when a user switches between tabs, QTabWidget has the

currentChanged signal. If a different tab is selected, the connected slot, updateUrl(),

will change the displayed URL in address_line.

Adding a QProgressBar to the Status Bar

In setUpWebView(), a progress bar and label are also created that will be used to display

the loading progress of a web page in the browser’s status bar. When the loadProgress

signal is generated, the updateProgressBar() slot is called.

The loadProgress slot includes integer information that we can use to track how

much of the page has loaded. While progress is less than 100, the progress bar and the

label are both displayed, and their values are set. The code for displaying the progress

bar is shown in the following lines:

 self.page_load_pb.setVisible(progress)

 self.page_load_pb.setValue(progress)

The widgets are then added to the status bar:

 self.status_bar.addWidget(self.page_load_pb)

When a page is finished loading, we call removeWidget() to remove the progress bar

and the label. An example of the progress bar can be seen at the bottom of Figure 16-8.

Note Creating a web browser is a very extensive task. there are many topics
that are not included in this project, such as accessing http cookies with Qt
Webengine Core, working with the browser history with QWebEngineHistory,
managing connections and client certificates, proxy support with QNetworkProxy,
working with javascript, downloading content from websites, and others. You are
definitely encouraged to research these topics if you need to use Qt Webengine for
more advanced projects.

 Project 16.7 – Tri-state QComboBox
While you may typically work with check boxes that have two states, checked or

unchecked, a third state also exists, partially checked. This type of condition is usually

Chapter 16 extra projeCts

498

influenced by the combo box’s children widgets or by the group that the QComboBox is

managing. Figure 16-9 shows a simple example of a tri-state combo box where not all of

its children are selected.

Figure 16-9. A window that contains a partially checked QComboBox

If all of the child elements are selected, the parent check box is checked. If some of

the children are selected, then the parent is partially checked.

 Explanation for the Tri-state QComboBox
For this example, let’s begin with the basic_window.py script from Chapter 1. There are

no new widgets or other classes introduced in this section. Here, we’ll focus on learning

what we’ve learned before in order to learn a new skill. Take a look at the tristate_cb

instance in setUpMainWindow() in Listing 16-7. You’ll notice that we want to wait for a

signal whenever the state of the widget changes using stateChanged.

Listing 16-7. Code for the tri-state QComboBox

tristate.py

Import necessary modules

import sys

from PyQt6.QtWidgets import (QApplication, QWidget,

 QCheckBox, QGroupBox, QButtonGroup, QVBoxLayout)

from PyQt6.QtCore import Qt

Chapter 16 extra projeCts

499

class MainWindow(QWidget):

 def __init__(self):

 super().__init__()

 self.initializeUI()

 def initializeUI(self):

 """Set up the application's GUI."""

 self.setMinimumSize(300, 200)

 self.setWindowTitle("Tri-State Example")

 self.setUpMainWindow()

 self.show()

 def setUpMainWindow(self):

 """Create and arrange widgets in the main window."""

 self.tristate_cb = QCheckBox("Select all toppings")

 self.tristate_cb.stateChanged.connect(

 self.updateTristateCb)

 # Create the check boxes with an indentation

 # using style sheets

 topping1_cb = QCheckBox("Chocolate Chips")

 topping1_cb.setStyleSheet("padding-left: 20px")

 topping2_cb = QCheckBox("Gummy Bears")

 topping2_cb.setStyleSheet("padding-left: 20px")

 topping3_cb = QCheckBox("Oreos, Peanuts")

 topping3_cb.setStyleSheet("padding-left: 20px")

 # Create a non-exclusive group of check boxes

 self.button_group = QButtonGroup(self)

 self.button_group.setExclusive(False)

 self.button_group.addButton(topping1_cb)

 self.button_group.addButton(topping2_cb)

 self.button_group.addButton(topping3_cb)

 self.button_group.buttonToggled.connect(

 self.checkButtonState)

Chapter 16 extra projeCts

500

 gb_v_box = QVBoxLayout()

 gb_v_box.addWidget(self.tristate_cb)

 gb_v_box.addWidget(topping1_cb)

 gb_v_box.addWidget(topping2_cb)

 gb_v_box.addWidget(topping3_cb)

 gb_v_box.addStretch()

 group_box = QGroupBox(

 "Choose the toppings for your ice cream")

 group_box.setLayout(gb_v_box)

 main_v_box = QVBoxLayout()

 main_v_box.addWidget(group_box)

 self.setLayout(main_v_box)

 def updateTristateCb(self, state):

 """Use the QCheckBox to check or uncheck all boxes."""

 for button in self.button_group.buttons():

 if state == 2: # Qt.CheckState.Checked

 button.setChecked(True)

 elif state == 0: # Qt.CheckState.Unchecked

 button.setChecked(False)

 def checkButtonState(self, button, checked):

 """Determine which buttons are selected and set the

 state of the tri-state QCheckBox."""

 button_states = []

 for button in self.button_group.buttons():

 button_states.append(button.isChecked())

 if all(button_states):

 self.tristate_cb.setCheckState(

 Qt.CheckState.Checked)

 self.tristate_cb.setTristate(False)

 elif any(button_states) == False:

 self.tristate_cb.setCheckState(

 Qt.CheckState.Unchecked)

 self.tristate_cb.setTristate(False)

Chapter 16 extra projeCts

501

 else:

 self.tristate_cb.setCheckState(

 Qt.CheckState.PartiallyChecked)

if __name__ == '__main__':

 app = QApplication(sys.argv)

 window = MainWindow()

 sys.exit(app.exec())

If tristate_cb is checked, we’ll use the value of state that is passed with the

stateChanged signal to check all of the check boxes in checkButtonState(). Otherwise,

the widgets are all unchecked.

Next, we’ll create the rest of the window, instantiate the children QCheckBox objects,

and arrange them in a QButtonGroup. The QButtonGroup signal buttonToggled is

emitted whenever any of the widgets are checked or unchecked. If the state of one of

the check boxes in the button group changes, the slot checkButtonState() is used to

find out which buttons are checked or unchecked. We can access all of the buttons in

QButtonGroup using the buttons() method.

Those values are then added to the button_states list. It is here that we take care

of updating the parameters of tristate_cb. If all values are True, setCheckState()

is used to ensure that tristate_cb only has two states. If all of the buttons are False,

then tristate_cb is unchecked. Finally, if there is a mix of True and False values in

button_states, tristate_cb is set to tri-state mode using setCheckState() and the

PartiallyChecked flag.

 Summary
In this chapter, you saw different GUI applications that build the structure for larger

projects, such as the camera GUI or the web browser GUI. Other projects introduced

components that you may be able to include in other programs, such as the directory

viewer GUI, the clock GUI, and the calendar GUI. In the case of the Hangman GUI, we

demonstrated how an understanding of QPainter is useful for drawing and customizing

the look of widgets. Finally, tri-state QComboBox widgets are useful for managing child

elements.

Chapter 16 extra projeCts

502

We have explored a variety of topics for designing graphical user interfaces using

PyQt6 and Python throughout this book – different types of widgets, classes, and

layouts. We saw how to stylize your interfaces, how to add menus, and how to make

an application simpler with Qt Designer. Advanced topics such as working with the

clipboard, SQL, and multithreaded applications were also covered.

The Appendix will fill in more details about some of the PyQt6 classes used in this

book as well as a few other classes that were not included in previous chapters.

Your feedback and questions are always welcome. Thank you so much for joining

me on this journey and allowing me to share my knowledge about GUI development

with you.

Chapter 16 extra projeCts

503
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1

 APPENDIX

Reference Guide for PyQt6
PyQt is a Python binding for the Qt Application framework maintained by Riverbank

Computing Limited. A binding is an application programming interface (API) that

provides the code to allow a programming language to use other libraries not native

to that language. Qt is a set of C++ libraries and development tools, providing access

to networking, threads, SQL databases, OpenGL and other graphics tools, XML, GUI

development, and a variety of other features. This chapter focuses only on PyQt6, but

many of the concepts and methods are still available in PyQt5.

Appendix contains a reference for some of the tools, modules, and classes learned

throughout this book, including

• A review of PyQt modules and classes

• An overview of Qt Style Sheets

• A discussion about Qt Namespace

More information about Riverbank Computing Limited and PyQt6 can be found at

https://riverbankcomputing.com/software/pyqt/intro.

 Selected PyQt6 Modules
PyQt provides a range of modules that give you access to a wide array of tools,

including basic GUI design, 2D and 3D rendering, multimedia content, networking,

global positioning, and more. For basic GUI development, you will primarily use the

QtWidgets, QtGui, and QtCore modules. Table A-1 lists the modules covered throughout

the book as well as a few extra you should check out.

For a full list of PyQt6’s top-level modules, check out the following link:

www.riverbankcomputing.com/static/Docs/PyQt6/module_index.html

https://doi.org/10.1007/978-1-4842-7999-1
https://riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/static/Docs/PyQt6/module_index.html

504

Table A-1. Table of select PyQt modules

Module Name Description

QtWidgets Provides the widgets and other classes for creating desktop-style UIs

QtCore Contains a variety of extra classes, including the essential non-GUI classes,

such as ones for Qt’s signal and slot system

QtGui Contains classes for 2D graphics and imaging, event handling, and window

system integration

QtPrintSupport Provides cross-platform support for configuring and connecting to printers

QtNetwork Provides classes for writing communications protocols using UDP or TCP

QtQuick Contains the classes for creating QML applications with Python

QtMultimedia Contains the classes for multimedia content, including cameras, images,

and audio

QtMultimediaWidgets Provides additional classes that increase the functionality of multimedia-

related widgets

QtWebEngineCore Contains the core classes used by other Web Engine modules

QtWebEngineWidgets Classes that can be used to create a Chromium-based web browser

QtSql Provides classes for working with SQL databases

sip Tools used for creating Python bindings for C ++ libraries (which is the

language Qt is written in)

uic Contains classes used for handling the .ui files created by Qt Designer

 Selected PyQt Classes
There are hundreds of PyQt classes. The following section lists the classes and widgets

that can be found throughout this book. Each subsection either lists tables with

commonly used methods and signals or a link to where you can find more information

about the class.

For a list of all the PyQt classes, check out

www.riverbankcomputing.com/static/Docs/PyQt6/sip- classes.html

APPEnDIx REfEREnCE GUIDE foR PyQT6

http://www.riverbankcomputing.com/static/Docs/PyQt6/sip-classes.html

505

Although it is written for C++, the Qt classes documentation is generally more

detailed. If you want more information about Qt classes, you can also check out

https://doc.qt.io/qt- 6/classes.html

Just keep in mind that some of the classes that exist in Qt are not available in PyQt. In

many cases, this is because Python already includes the functionality that the removed

class would provide. One common example is QList, which exists in Qt but is not

included in Python since it includes the list data structure.

 Classes for Building a GUI Window
With PyQt, you can create a new class that inherits from any of the widget classes.

However, for a general GUI application, you will need to create only one instance of

QApplication and create a class that inherits from either QWidget, QMainWindow, or

QDialog to create the application’s main window.

 QApplication

QApplication is responsible for handling the initialization and finalization of widgets in

graphical user interfaces. If you are making QWidget-based applications, then you will need

to create an instance of QApplication before creating any other objects related to the GUI.

Some of the QApplication class’s responsibilities include initializing an application

to conform to a user’s desktop settings, event handling, defining the GUI’s style, working

with the clipboard, and keeping track of all the application’s windows.

If you are creating an application that does not need a GUI and can be run through

the command line, then you should consider using QCoreApplication instead.

 QWidget

The QWidget class is the base class for all of PyQt’s graphical user interface objects. A

widget created from the QWidget class is able to receive input from mouse, keyboard, and

other events and able to paint itself on the screen. Widgets that are not embedded in a

parent widget are considered to be a window complete with a title bar and a frame. The

QWidget class is a subclass of QObject and QPaintDevice (the class that defines a two-

dimensional space for drawing on with QPainter). Some helpful QWidget methods can

be found in Table A-2.

APPEnDIx REfEREnCE GUIDE foR PyQT6

https://doc.qt.io/qt-6/classes.html

506

Table A-2. Selected methods from QWidget

Method Description

addAction(action) Adds an action to the widget

close() Closes the widget

height() Retrieves the widget’s height

width() Retrieves the widget’s width

move(x, y) Sets the location of the widget to (x, y)

rect() Retrieves the geometry of the widget minus the frame

setDisabled(bool) If True, the widget is disabled

setEnabled(bool) If True, the widget is enabled

setFont(font) Sets the font of the widget’s text (if the widget can display text)

setLayout(layout) Sets the layout manager for the widget

setGeometry(x, y,

width, height)

Sets the widget’s location, (x, y), and its size, width and height

setStyleSheet(styleSheet) Sets the styleSheet for the widget

setToolTip(text) Sets the widget’s tool tip

repaint() Repaints the widget immediately by calling paintEvent()

showFullScreen() Displays the widget in full-screen mode

update() Updates the widget by scheduling a paint event in the main event loop

 Event Handling

Events are typically caused by users or the underlying system. These can include moving

a mouse, pressing a key, resizing the window, or a timer delivering events. The widgets

in an application need to respond appropriately to the event. The events are generally

already handled in the background of simpler applications, but you sometimes may find

yourself needing to reimplement event handlers to supply further behavior or content

for the widgets. Table A-3 lists a few commonly used event handlers.

APPEnDIx REfEREnCE GUIDE foR PyQT6

507

Table A-3. Some event handlers used for supplying behavior to QWidget objects

Event Handler Description

paintEvent() Called whenever a widget needs to be repainted

resizeEvent() Called when a widget has been resized

mousePressEvent() Called when a mouse button is pressed while the mouse cursor

is inside of the widget. Which mouse button is clicked can be

specified in the event

mouseReleaseEvent() Called when a mouse button is released. A widget that receives

this event is dependent on receiving the mouse press event

mouseDoubleClickEvent() Called when a widget is double-clicked on

mouseMoveEvent() Called when the mouse moves while the button is held down. If

setMouseTracking() is True, events are sent even when no

buttons are pressed

enterEvent() Called when the mouse enters a widget’s space

leaveEvent() Called when the mouse leaves a widget’s space

keyPressEvent() Called when a key is pressed

keyReleaseEvent() Called when a key is released

focusInEvent() Called when a widget gets the keyboard focus

focusOutEvent() Called when a widget loses the keyboard focus

closeEvent() Called when either a widget or the window is closed

 QMainWindow

The QMainWindow class provides the framework for building an application, complete

with functions for adding a menu bar, toolbars, a status bar, and dock widgets. Menu

and toolbar items are created using QAction. QMainWindow already has its own layout,

to which you must add a central widget as the center area of the application’s window.

Some of the QMainWindow class’s methods can be seen in Table A-4.

APPEnDIx REfEREnCE GUIDE foR PyQT6

508

Table A-4. Select methods from QMainWindow

Method Description

addDockWidget(area,

dockwidget)

Creates a dock widget in the main window in the specified

area

addToolBar(area,

toolbar)

Creates a toolbar for the main window. An area can also be

specified

menuBar() Returns the main window’s menu bar

setStatusBar(statusbar) Creates the status bar for the main window

setCentralWidget(widget) Sets the window’s central widget

setWindowIcon(icon) Sets the window’s icon

setWindowTitle(text) Sets the window’s title. This is a method inherited from QWidget

 QDialog

Dialog boxes provide a top-level window that are generally used to quickly obtain

feedback from a user. QDialog instances can be modal or modeless. Modal dialogs are

often used when selecting an option in the dialog that will return a value. That value

could then be used to save a file, close a document, or cancel an action.

QDialog is the base class for other dialog box classes, including QColorDialog,

QFileDialog, QFontDialog, QInputDialog, QMessageBox, QProgressDialog, and

QErrorMessage. A few methods for setting the mode of the dialog and handling the

results of the dialog are in Table A-5.

Table A-5. Select methods for QDialog

Method Description

accept() Hides the modal dialog and returns True, accepting the actions specified by the dialog

reject() Hides the modal dialog and returns False, rejecting the actions specified by the dialog

open() The dialog is shown as a modal dialog and blocks the user from any further action until

the dialog is closed

show() The dialog is a modeless dialog, returning control to the user immediately

APPEnDIx REfEREnCE GUIDE foR PyQT6

509

Table A-6 lists some common default buttons that are part of the QMessageBox.

StandardButton or QDialogButtonBox.StandardButton enums. These flags are very

useful when creating custom dialog boxes. Each one of the buttons returns a specific

ButtonRole, describing the behavior of the button. For example, AcceptRole causes the

dialog and its contents to be accepted. This is equivalent to OK. A RejectRole rejects the

dialog, which is what Cancel does. There are other kinds of roles too. Refer to the table

for more information.

Table A-6. Select standard buttons for

QDialogButtonBox and QMessageBox

Method Description

Ok Defines an oK button with an AcceptRole

Open Defines an open button with an AcceptRole

Save Defines a Save button with an AcceptRole

Cancel Defines a Cancel button with a RejectRole

Close Defines a Close button with a RejectRole

Yes Defines a yes button with a YesRole

No Defines a no button with a NoRole

Reset Defines a Reset button with a ResetRole

 QPainter
The QPainter class is responsible for handling drawing in PyQt, being able to draw

simple lines and complex shapes onto widgets and other paint devices. QPainter is most

commonly used in the paintEvent() event handler, as well as for handling pixmaps and

images. Table A-7 displays some of the QPainter class’s methods for drawing.

APPEnDIx REfEREnCE GUIDE foR PyQT6

510

Table A-7. Methods selected from QPainter

Method Description

begin(device) Begins painting on the paint device

end() Ends painting. Resources used while painting are released

save() Saves the current painter state. save() must be followed by

restore(), which returns the current painter state

drawArc(QRectF,

startAngle, spanAngle)

Draws an arc defined by the QRectF rectangle, startAngle,

and spanAngle

drawChord(QRectF,

startAngle, spanAngle)

Draws a chord defined by the QRectF rectangle, startAngle,

and spanAngle

drawEllipse(QPointF, x_

rad, y_rad)

Draws an ellipse at QPointF center, with radius x_rad and

y_rad

drawLine(x1, y1, x2, y2) Draws a line from point (x1, y1) to (x2, y2)

drawPath(path) Draws a path specified by QPainterPath path

drawPie(QRectF,

startAngle, spanAngle)

Draws a pie defined by the QRectF rectangle, startAngle, and

spanAngle

drawPixmap(x, y, pixmap) Draws a pixmap at (x, y)

drawPoint(x, y) Draws a point at (x, y)

drawRect(x, y, width,

height)

Draws a rectangle at (x, y) with width and height

drawRoundedRect(QRectF,

x_rad, y_rad)

Draws a rectangle with rounded corners specified by QRectF,

with radius x_rad and y_rad

drawText(QPointF, text) Draws text at QPointF point

fillRect(QRectF, brush) fills in a QRectF rectangle with the brush color

rotate(angle) Rotates the coordinate system clockwise by angle (in degrees)

setBrush(brush) Sets the painter’s brush

setPen(pen) Sets the painter’s pen

setFont() Sets the painter’s font

APPEnDIx REfEREnCE GUIDE foR PyQT6

511

 Layout Managers
Using PyQt’s layout managers makes the process of arranging widgets much easier

compared to manually specifying each widget’s size, position, or resizeEvent()

event handler. Using layout managers is generally a good start for positioning widgets,

although you may still need to adjust a widget’s size policy or add stretching or spacing

to a layout.

The following classes inherit from the QLayout class, which is the base class for

layout managers:

 1. QBoxLayout – Arranges child widgets into a row (horizontally) or

into a column (vertically)

 a. QHBoxLayout – Arranges widgets horizontally

 b. QVBoxLayout – Arranges widgets vertically

 2. QGridLayout – Orders widgets in a grid of rows and columns

 3. QFormLayout – Lays out widgets into a form-like structure with

labels and their associated input widgets

 4. QStackedLayout – Arranges widgets into a stack where only one

widget is visible at a time. The convenience QStackedWidget class

is built on top of the QStackedLayout.

Table A-8 lists commonly used methods from the layout classes.

APPEnDIx REfEREnCE GUIDE foR PyQT6

512

Table A-8. Selected methods for the different layout managers

Method Class Description

addWidget(widget,

stretch, alignment)

QBoxLayout Adds widget to the end of the layout with

stretch factor and alignment

addWidget(widget,

row, column, rowSpan,

columnSpan alignment)

QGridLayout Adds widget at row, column with (optional)

rowSpan and columnSpan and alignment

addRow(label, field) QFormLayout Adds a new row with a given label and

field (input widget)

addWidget(widget) QStackedLayout Adds a new widget to the end of the layout.

This method returns the widget’s index in the

stack

addLayout(layout,

stretch)

QBoxLayout Adds a layout to the end of the box.

Creates a nested layout

addLayout(layout, row,

column, alignment)

QGridLayout Adds a layout at position (row, column).

Creates a nested layout

addSpacing(int) QGridLayout,

QBoxLayout

Adds a nonstretchable area (a

QSpacerItem) of int value to the layout

addStretch(int) QBoxLayout Adds a stretchable area (a QSpacerItem) of

int value to the layout

setSpacing(int) QLayout Sets the space between widgets in the

layout. Inherited from QLayout

setContentMargins(left,

top, right, bottom)

QLayout Sets the left, top, right, and bottom

margins around the layout

 Button Widgets
Buttons are one of the main tools used in a GUI for interaction, giving an application

feedback about a user’s decisions. Buttons in PyQt can display text or icons and

are checkable. The following classes inherit from the base class for button widgets,

QAbstractButton:

APPEnDIx REfEREnCE GUIDE foR PyQT6

513

 1. QPushButton – A command button used to tell the computer to

perform some action

 2. QCheckBox – Provides an option button that is checkable and

generally used for enabling/disabling features in an application

 3. QRadioButton – Similar to check boxes, but are mutually exclusive

 4. QToolButton – Typically used in a toolbar, tool buttons provide

quick-access buttons for selecting commands or options

For managing and organizing multiple buttons, the QButtonGroup class can act as a

container for creating exclusive buttons (the default setting). Table A-9 lists some of the

more commonly used methods for button widgets.

Table A-9. Selected methods for the different button widgets

Method Description

setIcon(icon) Sets the widget’s icon

setText(text) Sets the widget’s text

setAutoExclusive(bool) Enables autoexclusivity for buttons in a group

setCheckable(bool) Sets whether the button is a toggle button or not

setChecked(bool) Sets whether the button is checked or not

isChecked() Indicates whether the button is checked or not (if setCheckable()

is True)

text() Gets the buttons text

Some signals for the button widget classes are listed in Table A-10.

APPEnDIx REfEREnCE GUIDE foR PyQT6

514

Table A-10. Signals for the different button widgets

Signal Class Description

clicked(bool) QAbstractButton Signal emitted when the button is pressed and

released

pressed() QAbstractButton Emitted when the left mouse button clicks on the

button

released() QAbstractButton Signal emitted when the left mouse button is

released

toggled(bool) QAbstractButton Emitted when a checkable button changes its

state

stateChanged(bool) QCheckBox Emitted when the check box’s state changes

triggered(action) QToolButton Signal emitted when the action is triggered

 Input Widgets
There are quite a few widgets that are provided by PyQt for getting input from the user.

These widgets provide different means for gathering information, such as text entry or

selecting values with sliders, combo boxes, and spin boxes.

 Combo Boxes

The QComboBox class presents a user with a list of selectable options in a compact, drop-

down menu. Some of the class’s methods are found in Table A-11. When the combo box

is not being interacted with, all items except for the current item selected are hidden

from view. The QFontComboBox widget is another type of combo box that inherits

QComboBox and is used for selecting a font family.

APPEnDIx REfEREnCE GUIDE foR PyQT6

515

Table A-11. Select methods from the QComboBox class

Method Description

addItem(text) Appends an item to the list with text

addItems(list(text)) Appends a list of items to the combo box

currentIndex() Gets the index of the currently selected item

currentText() Gets the text of the currently selected item

insertItem(index, text) Inserts the text into the combo box at the given index

setItemText(index, text) Sets the text for the item at the given index

removeItem(index) Removes the item at the given index

clear() Clears all items from the combo box

setEditable(bool) If True, the contents of the combo box are editable

Table A-12 displays select signals for the combo box classes.

Table A-12. Commonly used signals from the QComboBox and

QFontComboBox classes

Signal Description

currentIndexChanged(index) Emitted if the current item in the combo box has changed

currentTextChanged(text) Signal emitted if the current item in the combo box has

changed. Returns text

activated(index) Emitted only if the user interacts with an item

highlighted(index) Emitted when an item in the combo box is highlighted

textActivated(text) Signal emitted when the user chooses an item

currentFontChanged(font) Emitted when the current font changes

APPEnDIx REfEREnCE GUIDE foR PyQT6

516

 QLineEdit

The QLineEdit widget provides a single line for entering and editing plain text. Although

not listed in the following tables, QLineEdit includes clear(), selectAll(), cut(),

copy(), paste(), undo(), and redo() slots already built-in. Table A-13 displays a few of

the QLineEdit class’s methods.

Table A-13. Methods from the QLineEdit class

Method Description

text() Retrieves the current text in the line edit

setAlignment(alignment) Sets the alignment of the text displayed in the widget

setPlaceholderText(text) Displays placeholder text while line edit is empty

setEchoMode(mode) The parameter mode describes how the contents of a line

should be displayed. Set mode to QLineEdit. Password to

mask characters

setMaxLength(int) Sets the maximum length of characters

setTextMargins(left, top,

right, bottom)

Sets the text margins for the text displayed in the line edit

setDragEnabled(bool) If True, dragging selected text in the line edit is permitted

A few common signals for QLineEdit can be seen in Table A-14.

Table A-14. Commonly used signals from the QLineEdit class

Signal Description

returnPressed() Emitted when the Enter key is pressed. If a validator is set, then

a signal is only emitted if the text is accepted

textChanged(text) Signal is emitted when the text changes

APPEnDIx REfEREnCE GUIDE foR PyQT6

517

 Text Editing Widgets

The two text editing classes, QTextEdit and QPlainTextEdit, provide tools and

functionality for displaying and editing larger bodies of text. QTextEdit also has the

added benefit of being able to work with rich text, graphics, and tables. Both classes are

similar to QLineEdit, because they already have editing features built-in. A few methods

for text editors are found in Table A-15.

Also worth noting is the QTextBrowser class, which inherits QTextEdit.

QTextBrowser only allows read-only mode but includes hypertext navigation

functionality so that users can click on links and follow them.

Table A-15. Select methods from QTextEdit and QPlainTextEdit

Method Description

find(text, flags) finds the next occurrence of text in the text edit

print(printer) Prints the text edit’s document to the printer

setPlaceHolderText(text) Sets placeholder text for text edit

setReadOnly(bool) If True, the text edit is set to read-only

toPlainText() Returns the text of the text edit as plain text

zoomIn(range) Zooms in on the text

zoomOut(range) Zooms out on the text

Commonly used signals for the text editing widgets can be found in Table A-16.

Table A-16. Select signals from QTextEdit and QPlainTextEdit

Signal Description

selectionChanged() Signal emitted when the text selected in the text edit changes

textChanged() Emitted whenever the contents of the text edit change

APPEnDIx REfEREnCE GUIDE foR PyQT6

518

 Spin Box Widgets

Spin boxes allow users to choose values within a given range by clicking up/down

buttons to cycle through the widget’s values. Users can also manually type in values into

the provided line edit. The QAbstractSpinBox class is the base class for the following

classes:

 1. QSpinBox – Handles integers.

 2. QDoubleSpinBox – Similar to QSpinBox, but is used for floating-

point values.

 3. QDateTimeEdit – A spin box widget for selecting dates and times.

Use setDisplayFormat() to set the format used for displaying the

dates and time.

 4. QDateEdit – A spin box that displays only dates. Inherits

QDateTimeEdit.

 5. QTimeEdit – A spin box that displays only times. Inherits

QDateTimeEdit.

Some of the methods for the QSpinBox and QDoubleSpinBox classes are listed in

Table A-17. The QDateTimeEdit and other spin box widgets have similar methods.

Table A-17. Select signals from QSpinBox and QDoubleSpinBox. The value val

refers to integers for QSpinBox and floating-point numbers for QDoubleSpinBox

Method Description

setValue(val) Sets the value val of the spin box

setMinimum(val) Sets the minimum value val of the spin box

setMaximum(val) Sets the maximum value val of the spin box

setPrefix(str) Adds a prefix to the start of the displayed value

setSuffix(str) Adds a suffix to the end of the displayed value

setRange(min, max) Sets the minimum and maximum range values

setSingleStep(val) The spin box’s value is incremented/decremented by val when the

arrow keys are pressed

APPEnDIx REfEREnCE GUIDE foR PyQT6

519

Some QSpinBox and QDoubleSpinBox signals are found in Table A-18.

Table A-18. Signals from QSpinBox and QDoubleSpinBox

Signal Description

valueChanged(val) Signal emitted when the value changes. Provides the new value’s val

textChanged(text) Signal emitted when the value changes. Provides the new value’s text

 Slider Widgets

The following widgets are different in appearance but are actually quite similar in

functionality. Widgets that inherit from the QAbstractSlider class are used for selecting

integer values within a bounded range. Classes that inherit QAbstractSlider include the

following:

 1. QDial – Provides a rounded range controller for selecting or

adjusting values. An example of QDial can be seen in Figure A-1.

 2. QScrollBar – Provides horizontal or vertical scrollbars that the

user can use to access other parts of a document that are wider

than the widget used to display it.

 3. QSlider – Creates the classic horizontal and vertical sliders

widgets for controlling values within a specified range.

APPEnDIx REfEREnCE GUIDE foR PyQT6

520

Figure A-1. Example of the QLCDNumber and QDial widgets. The XML and
Python code for this example can be found in the Appendix folder of the GitHub
repository

Table A-19 shows some of the methods of the QAbstractSlider base class.

APPEnDIx REfEREnCE GUIDE foR PyQT6

521

Table A-19. Select methods from QAbstractSlider

Method Description

value() Holds the slider's current value

setMinimum(int) Sets the minimum value of the slider

setMaximum(int) Sets the maximum value of the slider

setOrientation(orientation) Sets the orientation, Horizontal or Vertical

(provided by the Qt.Orientation enum)

setSingleStep(int) The slider’s value is incremented/decremented by int when

the arrow keys are pressed

setTracking(bool) If True, the slider’s position can be tracked

setSliderPosition(int) Sets the current position of the slider

setValue(int) Sets the current position of the slider to int. If tracking

is enabled, then this has the same value as the value()

getter

Signals of the QAbstractSlider class can be found in Table A-20.

Table A-20. Signals from QAbstractSlider

Signal Description

valueChanged(val) Signal emitted when the value changes. Provides the new value’s val

rangeChanged(min, max) Signal emitted when the range has changed with new minimum and

maximum values

sliderMoved(val) Emitted when the slider is pressed down and the slider moves

sliderPressed() Emitted when the slider is pressed down

sliderReleased() Emitted when the slider is released

APPEnDIx REfEREnCE GUIDE foR PyQT6

522

 Display Widgets
The following widgets are all used for different purposes, but each has one major

characteristic in common – they are all used for displaying information to the user.

 QLabel

QLabel is a versatile widget. Although a label provides no user interaction functionality,

QLabel is able to display plain or rich text, pixmaps, and even GIFs. Labels provide a

number of methods for configuring their appearance. Table A-21 lists a few of those

methods.

Table A-21. Select methods from QLabel

Method Description

setPicture(picture) Sets the label content to picture

setPixmap(pixmap) Sets the label content to pixmap

setMovie(movie) Sets the label content to movie

setText(text) Sets the label content to text

setAlignment(alignment) Sets the alignment of the label’s content

setIndent(int) Sets the number of pixels that the label’s text is indented

setMargin(int) Sets the label’s margins

 QProgressBar

Progress bars are used to give visual feedback to the user about the progress of a

computer operation. Progress bars can be displayed vertically or horizontally. Table A-22

shows some of the QProgressBar class’s methods.

APPEnDIx REfEREnCE GUIDE foR PyQT6

523

Table A-22. Select methods for the QProgressBar class

Method Description

value() Holds the progress bar’s current value

setMinimum(int) Sets the progress bar’s minimum value

setMaximum(int) Sets the progress bar’s maximum value

setRange(min, max) Sets the minimum and maximum values

setOrientation(orientation) Sets the orientation, Horizontal or Vertical

(provided by the Qt.Orientation enum)

setTextVisible(bool) If True, the current completed percentage is displayed

QProgressBar has one signal, valueChanged(int), that is emitted when the value

shown in the progress bar changes.

 QGraphicsView

The QGraphicsView class provides a widget for displaying the contents of a

QGraphicsScene. As the one part of Qt’s Graphics View Framework, the QGraphicsView

class’s responsibility is to display the items of a graphics scene in a scrollable window.

The QGraphicsScene object’s duty is to manage the items in a scene. QGraphicsItem (or

one of its subclasses) provides the items for a scene.

If you are interested in learning more about the Graphics View Framework, check

out https://doc.qt.io/qt- 6/graphicsview.html.

 QLCDNumber

The QLCDNumber widget displays numbers in a seven-segment LCD display. An example

of this is shown in Figure A-1. The display can visualize decimal, hexadecimal, octal,

and binary numbers. The LCD display can only display certain characters. Note that if a

character is passed that the widget cannot display, a space will be presented in place of

the character.

Table A-23 lists a few of QLCDNumber class’s methods.

APPEnDIx REfEREnCE GUIDE foR PyQT6

https://doc.qt.io/qt-6/graphicsview.html

524

Table A-23. Select methods from the QLCDNumber class

Method Description

value() Retrieves the LCD’s displayed value

intValue() Retrieves the displayed value rounded to the nearest integer value

display(val) Displays the value val in the display. val can be floating-point,

integer, or string types

setMode(mode) Sets the mode of the LCD to display Bin, Oct, Dec, or Hex values

setSmallDecimalPoint(bool) If True, the decimal is drawn between two digits

QLCDNumber has the overflow() signal, which is emitted when the widget is asked to

display a number or string that is too long.

 Item Views
The following model view classes provide the means to display items in lists, tables, or

tree structures. They must be used alongside a model class as part of Qt’s Model/View

framework.

 1. QListView – Provides a list and icon view for displaying items

from a model

 2. QTableView – Provides a table for displaying items from a model

 3. QTreeView – Provides a hierarchical tree architecture for

displaying items from a model

These classes all inherit from the QAbstractItemView class. Using signals and slots,

item views created from QAbstractItemView are able to interact with models that use

QAbstractItemModel. Each of the item views has their own methods for working with

rows, columns, headers, and items. Views use indices to manage items. You can find

some methods for QAbstractItemView in Table A-24.

APPEnDIx REfEREnCE GUIDE foR PyQT6

525

Table A-24. Select methods for the QAbstractItemView base class

Method Description

clearSelection() All items selected are deselected

selectAll() Selects all the items in the view

setCurrentIndex(index) Sets the item at index as the current item

update(index) Updates the area at the given index

setAlternatingRowColors(bool) If True, the background is drawn with alternating colors

setAcceptDrops(bool) If True, items can be dropped into the view

setDragEnabled(bool) If True, items can be dragged around in the view

setIconSize(size) Sets the size of icons

setItemDelegate(delegate) Sets an item delegate for the view’s Model/View framework

setModel(model) Sets the model for the view

PyQt also offers convenience item-based classes for each of the different types of

views – QListWidget, QTableWidget, and QTreeWidget. Items are added to the widgets

by using QListWidgetItem, QTableWidgetItem, or QTreeWidgetItem.

Select signals for QAbstractItemView can be found in Table A-25.

Table A-25. Select methods for the QAbstractItemView base class

Signal Description

activated(index) Signal emitted when the item at index is activated by the user

clicked(index) Emitted when the left mouse button is clicked on an item in the view

(specified by index)

doubleClicked(index) Emitted when a mouse button is double-clicked on an item in the

view (specified by index)

entered(index) Signal emitted when the mouse cursor enters the item at index.

Turn on mouse tracking to use

pressed(index) Signal emitted when a mouse button is pressed on an item at index

APPEnDIx REfEREnCE GUIDE foR PyQT6

526

 Container Widgets
PyQt provides a few container widgets for maintaining control over groups of widgets.

Containers can be used to manage input widgets, make the process of organizing a group

of widgets simpler, or simply as a decorative widget for separating groups of widgets.

Once a container is created, a layout manager still needs to be applied to the container

widget itself.

 Containers with Frames

QFrame widgets can enclose and group widgets as well as function as placeholders in

windows. Using frames, you can set the appearance of other widgets to have raised,

sunken, or flat appearances. The QFrame class is used as the base class for a few other

container classes, including QToolBox and QStackedWidget. Table A-26 lists a few of the

QFrame class’s methods.

Table A-26. Select methods for QFrame

Method Description

setFrameRect(QRect) Sets the rectangle that the frame is drawn in

setFrameShadow(shadow) Sets the frame’s shadow, using flags such as Plain, Raised, or

Sunken

setFrameShape(shape) Sets the frame’s shape, using flags such as Box, Panel, HLine,

and VLine

setLineWidth(int) Sets the width of line drawn around the frame

QToolBox widgets provide a series of pages or compartments in a column. To

navigate through each of the pages, a tab is included at the top of each page. By clicking

on the next tab, the user can view a new tab’s contents. Some methods for QToolBox are

listed in Table A-27.

APPEnDIx REfEREnCE GUIDE foR PyQT6

527

Table A-27. A few of the QToolBox class’s methods

Method Description

addItem(widget, text) Adds the widget in a new tab at the bottom of the toolbox

insertItem(index, widget,

text)

Inserts the widget in a new tab at the given index

indexOf(widget) Returns the index of the specified widget

setCurrentIndex(index) Sets the index to a new item’s index

setCurrentWidget(widget) Makes the widget the current widget displayed in the toolbox

When the item in a QToolBox is changed, the currentChanged(index) signal is

emitted.

The QStackedWidget has a similar function to QToolBox, displaying multiple widgets

stacked on top of one another to conserve space in a window. However, there is a key

difference: QStackedWidget does not provide a means for the user to switch between

tabs. Therefore, other widgets, such as a QComboBox or a QListWidget, are used to

navigate through the different pages.

The QTabWidget is another container class that is similar to QStackedLayout but

provides the tabs necessary to switch pages.

Finally, QGroupBox widgets typically group together collections of radio buttons and

checkboxes. The main visual difference from the QFrame class is the addition of a title.

 QScrollArea

A scroll area can be added onto a child widget to display the contents within a frame. If

the size of the frame changes, the scroll bars will appear, allowing the user to still view

the entire child widget. A few class methods are listed in Table A-28. The manner in

how the scroll bars appear can be controlled with the QAbstractScrollArea class’s size

policies.

APPEnDIx REfEREnCE GUIDE foR PyQT6

528

Table A-28. Select methods for QScrollArea

Method Description

ensureVisible(x, y,

xmargin, ymargin)

Ensures the specified (x, y) coordinate with margins xmargin

and ymargin remains visible in the viewport

setAlignment(alignment) Sets the alignment of the scroll area’s widget

setWidget(widget) Sets the scroll area’s widget

setWidgetResizable(bool) If False, the scroll area abides by the child widget’s size

 QMdiArea

For multiple-windowed GUIs (MDIs), the QMdiArea class provides the container for

displaying multiple windows inside a single application window. Subwindows are

instances of the QMdiSubWindow class and can be arranged in tiled or cascading patterns.

The subwindows can work together, relaying information back and forth. A context

menu could also be added to the MDI area widget as a means to conveniently switch

between windows. Some methods for the MDI widget are found in Table A-29.

Table A-29. List of select QMdiArea methods

Method Description

addSubWindow(widget) Adds widget as a new subwindow to the MDI area

activeSubWindow() Returns the active subwindow

cascadeSubWindow() Arranges subwindows in a cascade pattern

tileSubWindows() Arranges subwindows in a tiled pattern

removeSubWindow(widget) Removes widget from the MDI area, where widget is a

subwindow

setBackground(background) Sets the QBrush background for the MDI area

subWindowList(subwindows) Returns a list of subwindows

setTabsClosable(bool) If True, close buttons are placed on each tab in the tabbed view

setTabsMovable() If True, tabs within the tabbed view are movable

APPEnDIx REfEREnCE GUIDE foR PyQT6

529

 QtQuick and QML
As Qt and PyQt continue to evolve with each new version, more focus has gone into

creating more dynamic and fluid user interfaces. This is especially true with Qt 6

and PyQt6.

With the QtQuick and QtQml modules, developers are able to use the Qt Modeling

Language (QML) to build custom interfaces and components. QtQuick includes a

number of classes for building a canvas for visualizing graphical components, handling

user input, working with data, and handling graphical effects that are reminiscent of

mobile applications.

Note that QtQuick is different from the QtWidgets API that we have used throughout

most of this book. The QML syntax that QtQuick uses is based on embedded JavaScript.

Using PyQt, we are able to create applications that connect to the QML code using

Python. In many instances, you are even able to use classes such as QtCore and QtGui to

communicate with the interface built using QML.

There are two links that may help you get started using QtQuick. The first is Qt’s Qt

Quick documentation at https://doc.qt.io/qt- 6/qtquick- index.html. The second is

the Riverbank documentation at www.riverbankcomputing.com/static/Docs/PyQt6/

qml.html#ref- integrating- qml.

 Qt Style Sheets
For a great reference of widgets and properties that can be manipulated with Qt Style

Sheets, have a look at https://doc.qt.io/qt- 6/stylesheet- reference.html.

Style sheets allow for customizing many aspects and behaviors of widgets. Table A-30

lists many of the properties that can be modified. Widgets support only certain

properties, so be sure to check out Qt’s documentation if you are not sure about which

properties you can change.

APPEnDIx REfEREnCE GUIDE foR PyQT6

https://doc.qt.io/qt-6/qtquick-index.html
http://www.riverbankcomputing.com/static/Docs/PyQt6/qml.html#ref-integrating-qml
http://www.riverbankcomputing.com/static/Docs/PyQt6/qml.html#ref-integrating-qml
https://doc.qt.io/qt-6/stylesheet-reference.html

530

Table A-30. List of properties that can be influenced using Qt Style Sheets

Property Description

alternate-background-color The alternate background color for QAbstractItemView

widgets

QListView{

alternate-background-color: blue;

background: grey

}

Background Shorthand for setting the background

background-color Background color used for the widget

QPushButton{

background-color: #49DE1F

}

background-image The background image used for the widget

QFrame{

background-image: url(images/black_cat.png)

}

Border Shorthand for setting the widget’s border

QComboBox{

border: 2px solid magenta

}

border-top, border-right,

border- bottom, border-left

Shorthand for specifying sides of the widget’s border

border-color The color for all sides of the widget’s border

border-image Specifies an image to fill the border

border-radius The radius of the border’s corners

QTextEdit{

border-width: 1px;

border-style: groove;

border-radius: 3px

}

(continued)

APPEnDIx REfEREnCE GUIDE foR PyQT6

531

Property Description

border-style Specifies the style for all of the border’s edges

border-width Specifies the width for all of the border’s edges

color The color used for rendering text

font Shorthand for defining a widget’s font

QRadioButton{

font: bold italic large “Helvetica”

}

font-family, font-size, font-

style, font-weight

other properties used to individually set a font’s features

height, width The height and width of a widget

icon-size The width and height of a widget’s icon

image The image drawn on a widget. Can use url or svg

margin Specifies the widget’s margins. Just like border, specific

sides can also be set

max-height, max-width The widget’s maximum height or width

min-height, min-width The widget’s minimum height or width

outline The outline draws a widget’s border. Can also specify color,

style, and radius

padding Specifies the widget’s padding. Just like border, specific

sides can also be set

selection-color The foreground color of selected items to text

spacing Sets the internal spacing in a widget

text-align Specifies the alignment of text and icons inside of a widget

QPushButton{

text-align: right

}

Table A-30. (continued)

APPEnDIx REfEREnCE GUIDE foR PyQT6

532

 Qt Namespace
Throughout this book, you have come across numerous enums and flags that allow you

to describe or modify the parameters, states, and appearances of widgets. The Qt class

in the QtCore module organizes the multitude of identifiers in the Qt Namespace. A

namespace in C++ is essentially used to organize the names of functions and variables

into logical groups to prevent errors.

To get an idea of just how extensive Qt Namespace is, have a look at https://doc.

qt.io/qt- 6/qt.html. There you’ll find enums related to alignment, cursor style, date

format, dock widget areas, keyboard buttons, window states, and more.

 Summary
You have already used many of PyQt’s foundational classes for building graphical user

interfaces while following along with this book. The Appendix provides references to

help you analyze the programs found in this book and to learn more about the widgets,

layouts, and style sheets used to design and build PyQt applications. The classes and

methods contained here act as a guide to get you thinking about ways to build and

improve your own programs.

There is simply not enough room to include every class, method, or signal in this

guide. As you follow along with the examples, use this Appendix as a resource to help

you learn and find out more about the possibilities of PyQt. If the answer isn’t provided

for you here, follow the links, search on the Internet, or send me an email.

Happy coding!

APPEnDIx REfEREnCE GUIDE foR PyQT6

https://doc.qt.io/qt-6/qt.html
https://doc.qt.io/qt-6/qt.html

533
© Joshua M Willman 2022
J. M. Willman, Beginning PyQt, https://doi.org/10.1007/978-1-4842-7999-1

Index

A
Account management

addItem() and deleteItem()
methods, 434

createConnection() method, 429
createModel() method, 430
definition, 407
MainWindow class, 428
project, 408
QSqlQuery classes

insert, update, and delete
records, 418

PyQt, 417
source code, 416

QSqlRelationalTableModel class
createConnection() method, 425
delegates, 426
MainWindow class, 424
setUpMainWindow() method, 425
table creation, 423

QSqlTableModel class
createConnection() method, 421
MainWindow class, 420
QMessageBox, 421
setUpMainWindow() method,

422, 423
table creation, 419

QtSql module, 409
accounts and countries tables, 412
connection, 409, 410
CreateEmployeeData class, 410

dataset, 410–415
SQLite file, 415

relational databases, 407
setSortingOrder() slot, 435
setUpMainWindow() method, 431–433

Animation scenes
QPropertyAnimation

components, 327
createObjects() method, 332
createScene() method, 333
importing classes, 330
objects class, 330
QObject, 328
visualization, 331

widgets
easing curves, 339
QAbstractAnimation, 335
QCheckBox, 335
QPropertyAnimation, 334
setUpMainWindow() method, 336
signals and slots, 334
startAnimations() slot, 338
stopFlashing() and

closeEvent(), 339

B
Built-in dialog classes, 116

getSaveFileName(), 117
QColorDialog class, 119
QFileDialog class, 116
QFontDialog class, 118

https://doi.org/10.1007/978-1-4842-7999-1

534

QInputDialog class, 117, 118
QMessageBox class, 121

C
Calendar project, 467–473
Camera GUI, 457–465
Central processing unit (CPU), 438
Clipboard

copyFromClipboard() and pasteText()
slots, 264

createClipboardDock() method, 263
data storage, 259
MainWindow class, 261
QClipboard class, 259, 261
setUpMainWindow() method, 262
sticky notes (see Sticky note

application)
Clock GUI displays, 464–467
Comma-Separated Values (CSV), 403–405

D
Databases

account management, 407–436
data analysis, 395
geographic distribution, 395
MVC (see Model-View-

Controller (MVC))
SQL (see Structured Query

Language (SQL))
Data presentation, 273

QTreeWidget class
MainWindow class, 294
setUpMainWindow() method,

295, 296
tree-like structure, 293, 294

Directory viewer
command line interface, 452
local system’s directories, 453
menu option, 456
source code, 453–455

E
Embedded style sheets

ID Selector, 173
MainWindow class, 174
QApplication object, 172
QPushButton, 172
widgets, 173, 174

Event handling, 201, See also
Handling events

definition, 25, 26
QCheckBox widget

checkboxes, 34
main window, 35
printSelected() slot, 37
setUpMainWindow()

method, 36
QLineEdit widget

clearText() and acceptText()
slots, 34

collecting/clearing text, 31
main window, 32
setUpMainWindow() method, 33
window sizes, 32

QMessageBox class
feedback/methods, 38
images, 38
information/question dialog, 40
main window, 39, 40
searchAuthors() slot, 42, 43
setUpMainWindow() method, 41
types, 39

Built-in dialog classes (cont.)

INDEX

535

warning dialog box, 44
windows vs. dialogs, 39

QPushButton widget
alignment flags, 29
buttonClicked() slot, 29
main window, 27
meaning, 26
QLabel widget, 27
setUpMainWindow() method, 28

signals/slots, 26

F
File renaming

directory selection, 440, 441
QProgressBar widget, 441

chooseDirectory() slot, 448
imports/style sheet, 441, 442
MainWindow class, 445
progress bar/text edit widgets, 443
renameFiles() slot, 448
setUpMainWindow()

method, 445–447
update widget values, 449
worker class, 443

G
GNU General Public License

(GPL), 2
Graphical user interfaces (GUI)

definition, 5
dialog boxes, 7
empty window, 8–10
event loop, 9
initializeUI() function, 11
learning process, 13
login/registration dialog

application’s main window, 46
clickLoginButton() slot, 50, 51
closeEvent() method, 54
components, 46
confirmSignUp() slot, 59, 60
createNewUser()/

openApplicationWindow()
method, 53

displayPasswordIfChecked()
slot, 52

event handlers, 54
explanation, 47
information/warning dialog, 52
login window, 45
MainWindow class, 55
QDialog, 56
registration dialog, 45, 46
setEchoMode() method, 49
setUpWindow() method, 48,

49, 57–59
users.txt file, 61
warning dialog, 60

procedural programming, 10
QLabel widgets

absolute positioning, 17
accessors/getters/mutators/

setters, 16
explanation, 14–18
place images and text, 13, 14
setUpMainWindow() method, 17

setGeometry() method, 11
setWindowTitle() method, 11
user profiles

createImageLabels() method, 21
main window, 20
schematic images, 19
setUpMainWindow() method, 22–24
user’s information, 18

INDEX

536

Graphics/animation
animation (see Animation scenes)
learning process, 299
painter GUI

canvas class, 317, 318
createActions() and createMenu()

methods, 323
createToolbar() method, 325
MainWindow class, 322–326
mouse movement events, 319–322
mousePressEvent()/

mouseReleaseEvent(), 319, 320
paintEvent() event handler, 322
PyQt classes, 316
selectDrawingTool() slot, 318
setUpMainWindow() method, 323
toolbar, 315
tool tips, 327
turnAntialiasingOn() slot, 326
widget/action, 327

QPainter class, 300
QPropertyAnimation, 328

H, I, J
Handling events

communication, 203
event handlers, 202
key events

escape key, 204
keyPressEvent(), 203
MainWindow class, 204, 205
QWidget, 203

learning process, 201
mouse events

enterEvent() and leaveEvent()
methods, 209

horizontal/vertical values, 209, 210

images and information, 207
main window, 207, 208
QMouseEvent class, 205
QPointerEvent, 209
QWidget, 206
window causes, 210, 211

QEvent class, 201
signals, 202

closed singal, 211
keyPressEvent(), 215
MainWindow class, 212
pyqtSignal, 211
QLabel object, 212
setUpMainWindow()

method, 213
Hangman application

DrawingLabel class, 483
interfaces, 474
main window class, 484
source code, 475–486

K
Keypad application

code generation, 236
header label, 238
layout manager, 238
palette source code, 237
Python class, 236
QLineEdit widgets, 239–241
QPushButton widgets,

242–244, 246–248
retranslateUi() method, 248, 249
signals and slots, 248

context menu, 231
dragging and dropping, 228
form selection, 228
frames, 229

INDEX

537

interfaces, 228
layouts, 230, 231
preview, 234
properties, 232, 233
Python file, 228, 235, 236
QFrame class, 229
script creation

checkPasscode() slot, 253
inheritance approach, 250
initializeUI() method, 250
lambda function, 251
numberClicked() slot, 252
push buttons, 251
QIntValidator, 249

signals/slots mode, 234, 235

L
Layout management

absolute positioning, 65
horizontal/vertical layouts

checkUserInput() slot, 69
main window, 67
QBoxLayout, 66
QHBoxLayout, 67
setUpMainWindow() method, 68
stretch parameter, 66

inner layout, 65
learning process, 63
nested layout (see Nested layout)
pages (QStackedLayout)

main window, 97
methods, 96
multiple pages, 95
setUpMainWindow()

method, 98–100
QFormLayout class

application form, 87, 88

clearText() and
checkFormInformation()
methods, 94

main window, 89
regular expressions, 92
setUpMainWindow()

method, 90, 91
validator, 92
widgets/layouts, 93–95

grid layout (QGridLayout)
addWidget() method, 79
child widgets, 84–87
daily planner, 80
main window, 80
QTextEdit class, 81
saveWidgetValues() method, 85, 86
spreadsheet/matrix, 79
widgets/spanning rows/

columns, 82–84
QVBoxLayout class, 64

main window, 70
QButtonGroup class, 71–73
setUpMainWindow() method, 71
user window, 69, 70

space management
content margins, 103
demonstration, 102
grid and form layouts, 101
stretch factor, 103
widgets, 101

widget objects, 64

M
Menus

icons/QIcon class
application icon, 112
central widgets, 115

INDEX

538

changeButtonIcon() slot, 115
graphical images, 111
main window, 113
original application icon, 114
setWindowIcon() method, 114

macOS and Windows, 106
menu bar

actions, 109–111
addMenu() method, 111
file menu, 106, 107
initializeUI() method, 109
QMainWindow, 107, 108
QMainWindow vs. QWidget,

108, 109
numerous devices and systems, 105
photo editors (see Photo editors GUI)
rich text notepad (see Rich text

notepad GUI)
Model-View-Controller (MVC)

abstract class/interface, 398
architecture, 396, 397
components, 396
CSV file, 403–405
data applications, 398
MainWindow class, 400
QStandardItemModel class, 399
setUpMainWindow() method, 401, 402
table creation, 399

Multiple Document Interface (MDI), 266
Multiple-windowed GUIs (MDIs), 528
Multipurpose Internet Mail Extensions

(MIME), 264

N
Nested layout

addLayout() method, 73

calculateTotal() slot, 78
combining layouts, 77–79
main window, 74
QSpinBox/QComboBox widget, 75, 76
setLayout() method, 73
visualization, 78

O
Object-oriented programming (OOP), 8

P
Photo editors GUI

createActions() method, 146, 147
createMenu() method, 148
designing process, 143
dock widget creation, 149, 151
handling images

clearing and rotating images, 154
flipping images, 156, 157
loading/saving images, 151–157
main window, 154
QPixmap method, 153
resizing images, 157
transformations, 155

landscape image, 142
main window, 144
QPrinter class, 157, 159
setUpMainWindow() method, 145
toolbar creation, 149
toolbar/dock widget/status bar, 143

PyQt
framework, 1
learning process, 1
meaning, 2
PyQt5 vs. PyQt6, 3
Python 3, 3, 4

Menus (cont.)

INDEX

539

signal and slot mechanism, 2
PyQt6

binding, 503
button widgets, 512–514
classes, 504
container widgets, 526

QFrame class, 526, 527
QMdiArea methods, 528
scroll area, 527, 528

display widgets
progress bars, 522
QGraphicsView class, 523
QLabel, 522
QLCDNumber widget, 523

GUI window
event handling, 506, 507
QApplication, 505
QDialog, 508, 509
QDialogButtonBox and

QMessageBox, 509
QMainWindow, 507, 508
QWidget, 505, 506

input widgets, 514
QComboBox class, 514, 515
QFontComboBox class, 515
QLineEdit class, 516
slider widgets, 519
spin boxes, 518, 519
text editing classes, 517

installation, 4
item views, 524, 525
layout managers, 511, 512
modules, 503, 504
vs. PyQt5, 3
QPainter class, 509, 510
Qt Namespace, 532
QtQuick/QML, 529

Qt Style Sheets, 529–531
reference, 503

Python Package Index (PyPI), 4

Q
QPainter class

components, 300
drawPoints() and drawDiffLines()

methods, 305–307
drawText() method, 307, 308
gradients, 313, 314
MainWindow class, 302
paintEvent() function, 303, 304
painting functions, 301
QColor/QPen/QBrush classes, 304, 305
two-dimensional shapes

cubicTo() method, 312
drawCircles() method, 312
drawCurves() method, 311
drawPolygons() method, 310
drawRectangles() method, 309
drawRoundedRects() method, 311
shapes drawn, 308–313

Qt Designer application
approaches, 218
building process, 226
editing modes, 225, 226
graphical user interface, 218, 219
images/icons, 257
installation, 218
keypads (see Keypad application)
learning process, 217
main window/menu, 254

actions, 256
menus/submenus, 255, 256
toolbars, 256

INDEX

540

pixmap property, 257
style sheets, 257
user interface

action editor, 224
edit resources dialog, 225
form dialog box, 219, 220
layouts and widgets, 220, 221
object inspector displays, 223
property editor, 222
resource browser, 224
signal/slot editor, 223

Qt Modeling Language (QML), 529
anchors, 370
ApplicationWindow control

controls types, 381, 382
FileDialog, 380, 385
image viewer, 381
loading process, 380
MenuBar control, 385
QQmlApplicationEngine, 386, 387
signals/signal handlers, 385
windows, 382–385

binding, 371
components, 366, 368
declarative, 360
files, 367
images and text, 369, 370
language/syntax

components, 363
coordinate system, 365
properties, 365
QtQuick component, 363
syntax principles, 364, 365

layout handling
approaches, 376
column/grid positioners, 377–380

positioners/position elements,
376, 377

images, 371
QQuickView, 371, 372
QtQml module, 361

Qt Quick module
building user interfaces, 359
context/guidance, 361
document/components, 360
elements, 362, 363
QML (see Qt Modeling

Language (QML))
reusable components

ColorRect, 374
MouseArea, 375
mouse event handlers, 373
signal handlers, 375

transformation (see Transformation)

R
Relational Database Management

Systems (RDBMS), 405
RGB slider widget

color updates, 351–354
demo project, 356–358
getPixelValues() method, 355
image handling classes, 343
imports, 345
methods, 354–356
mousePressEvent() method, 345
QSlider and QSpinBox

widgets, 349–351
QSlider class, 344
RGBSlider class, 348
setUpMainWindow() method, 349
sliders and spin boxes, 343

Qt Designer application (cont.)

INDEX

541

style sheet, 346, 347
techniques, 341

Rich text notepad GUI
addMenu() method, 129
createActions() method, 125–127
createMenu() method, 128
designing process, 123
file menu, 129, 130
MainWindow class, 124
menu bar/QTextEdit widget, 122
saveToFile() slot, 130
searchText() method, 131, 132
setShortcut() method, 126
setUpMainWindow() method, 125
tools menu, 132, 133
widgets/features

createActions() method, 137
createMenu() method, 138
main window, 133, 134
Python script, 134–136
QDockWidget class, 140, 141
QStatusBar class, 136
QToolBar class, 139
setUpMainWindow() method, 135
status bar, 134
submenus, 136–139

S
Single Document Interface (SDI), 266
Sticky note application

building process, 265
convenience classes, 274
createActions() method, 268
createClipboard() method, 270
createMenu() method, 270
drag-and-drop methods

GitHub repository, 279

MainWindow class, 280
QMimeData, 279
setUpMainWindow() method, 281

MainWindow class, 267
menu items, 271
model/view design pattern, 273
QListWidget class

addListItem() slot, 277
initializeUI() method, 275
inventory/items, 274
MainWindow class, 275, 278
methods, 275
QInputDialog, 278
setUpMainWindow() method, 276

QTableWidget class
changeHeader() slot, 291
context menus, 288–290
copyItem() and pasteItem()

methods, 291
createActions() method, 286
createMenu() method, 287
edit data, 290–293
MainWindow class, 284
methods, 292
modification, 292
QHeaderView/QTableView

class, 286
setItem() method, 292
setUpMainWindow() method, 285
tables, 283

SetUpMainWindow() method, 268
Structured Query Language (SQL)

commands, 405, 406
definition, 404
RDBMS, 405
relational databases, 404
SQLite keywords and

functions, 406

INDEX

542

Styles
containers/tabs

backgroundTab() page, 181
contact form, 175
MainWindow class, 177
profileDetailsTab() page, 179
QGroupBox class, 176
QRadioButton class, 176
QTabWidget class, 177
setUpMainWindow()

method, 178
widgets, 175

CSS properties, 198, 199
default command, 162, 163
embedded (see Embedded

style sheets)
food ordering service apps

design, 184
loading images, 198
main window, 189–191
MainWindow class, 185
pizzaTab() method, 191, 193
radio buttons, 197
side bar updating, 196
style sheet creation, 186–189
tabbed interface, 182, 183
wingsTab() method, 194–196

learning process, 161
QStyle class, 161, 162
widget modification

attributes/tags, 166
declaration, 167
HTML, 164–166
initializeUI(), 170
inline, 166

interactions, 170–172
main window, 169
principles, 163
QLabel widgets, 165
QPushButton, 170
Qt Style Sheets, 167–169
subcontrols/pseudostates, 167

T
Threads management

context switches, 438
learning process, 437
multithreading, 438
process, 438
processing long events, 439, 440
PyQt, 439
renaming files (see File renaming)

Transformation
animate objects, 387
easing type, 393
mouse clicks, 389
rotated and scaled objects, 388
source code, 391, 392
spin wheel rotation, 391

Tri-state QComboBox, 498–502

U, V
User Interface Compiler (uic), 235
Uniform Resource Locator (URL), 484
User interface (UI)

concepts, 6, 7
definition, 5
graphical user interfaces (GUI), 5

INDEX

543

W, X, Y, Z
Web browser

backPageButton() slot, 495
progress bar, 485
QProgressBar, 497

QtWebEngineWidgets module, 485
source code, 487–491, 493–495
tabs, 496
URLs, 484
web page, 496

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with PyQt
	The PyQt Framework
	Why Choose PyQt?
	PyQt5 vs. PyQt6

	Installing Python 3 and PyQt6
	Checking Your Version of Python
	Installing PyQt6

	Introduction to User Interfaces
	What Is a Graphical User Interface?
	Concepts for Creating Good Interface Design

	Creating Your First GUI: An Empty Window
	Explanation for Creating an Empty Window
	Modifying the Window

	Summary

	Chapter 2: Building a Simple GUI
	The QLabel Widget
	Explanation for Using QLabel

	Project 2.1 – User Profile GUI
	Designing the User Profile GUI
	Explanation for the User Profile GUI

	Summary

	Chapter 3: Adding More Functionality with Widgets
	Event Handlers and Signals and Slots
	The QPushButton Widget
	Explanation for Using QPushButton

	The QLineEdit Widget
	Explanation for Using QLineEdit

	The QCheckBox Widget
	Explanation for Using QCheckBox

	The QMessageBox Dialog
	Windows vs. Dialogs
	Explanation for Using QMessageBox

	Project 3.1 – Login GUI and Registration Dialog
	Designing the Login GUI and Registration Dialog
	Explanation for Creating the Login GUI
	How to Open a New Window or Dialog
	Using Event Handlers to Close a Window

	Explanation for Creating the Main Window
	Explanation for Creating the Registration Dialog

	Summary

	Chapter 4: Learning About Layout Management
	Using Layout Managers in PyQt
	Absolute Positioning
	Horizontal and Vertical Layouts with Box Layouts
	Explanation for QHBoxLayout
	Explanation for QVBoxLayout
	The QButtonGroup Class

	Creating Nested Layouts
	Explanation for Nested Layouts
	The QSpinBox and QComboBox Widgets
	Combining Layouts and Arranging Widgets

	Arranging Widgets in Grids with QGridLayout
	Explanation for QGridLayout
	The QTextEdit Widget
	Adding Widgets and Spanning Rows and Columns in QGridLayout
	Finding Child Widgets in a Layout

	Building Forms with QFormLayout
	Explanation for QFormLayout
	Adding Widgets and Layouts to QFormLayout

	Managing Pages with QStackedLayout
	Explanation for QStackedLayout

	Additional Tips for Managing Space
	Explanation for Managing Space
	Setting Content Margins

	Summary

	Chapter 5: Menus, Toolbars, and More
	Common Practices for Creating Menus
	Creating a Simple Menu Bar
	Explanation for Creating a Menu Bar
	QMainWindow vs. QWidget
	Creating the Menu Bar and Adding Actions

	Using Icons and the QIcon Class
	Explanation for Using Icons
	Setting the Central Widget

	Built-in Dialog Classes in PyQt
	The QFileDialog Class
	The QInputDialog Class
	The QFontDialog Class
	The QColorDialog Class
	The About QMessageBox

	Project 5.1 – Rich Text Notepad GUI
	Designing the Rich Text Notepad GUI
	Explanation for the Rich Text Notepad GUI

	Expanding the Features in a Main Window
	Explanation for Expanding the Features
	The QStatusBar Class
	Creating Submenus with Checkable Menu Items
	The QToolBar Class
	The QDockWidget Class

	Project 5.2 – Simple Photo Editor GUI
	Designing the Photo Editor GUI
	Explanation for the Photo Editor GUI
	Handling Images in the Photo Editor GUI
	The QPrinter Class

	Summary

	Chapter 6: Styling Your GUIs
	What Are Styles in PyQt?
	Changing the Default Style

	Modifying Widget Appearances
	Using HTML to Change the Look of Text
	Using Qt Style Sheets to Change the Look of Widgets
	Explanation for Using “Inline” Qt Style Sheets
	Customizing Styles to React to Interactions

	Explanation for Using “Embedded” Qt Style Sheets
	Applying Changes to Specific Widgets

	Organizing Widgets with Containers and Tabs
	The QRadioButton Widget
	The QGroupBox Class
	The QTabWidget Class
	Explanation for Using Containers and Tabs

	Project 6.1 – Food Ordering GUI
	Design the Food Ordering GUI
	Explanation for the Food Ordering GUI
	Creating the Style Sheet
	Building the Main Window

	CSS Properties Reference
	Summary

	Chapter 7: Handling Events in PyQt
	Event Handling in PyQt
	Using Signals and Slots
	Using Event Handlers to Handle Events
	Difference Between Signals and Slots and Event Handlers

	Handling Key Events
	Explanation for Handling Key Events

	Handling Mouse Events
	Explanation for Handling Mouse Events

	Creating Custom Signals
	Explanation for Creating Custom Signals

	Summary

	Chapter 8: Creating GUIs with Qt Designer
	Getting Started with Qt Designer
	Installing Qt Designer
	Exploring Qt Designer’s User Interface
	Qt Designer’s Editing Modes

	Creating an Application in Qt Designer
	Project 8.1 – Keypad GUI
	Explanation for the Keypad GUI
	Selecting a Form
	Arranging Objects on the Form
	The QFrame Class
	Applying Layouts in Qt Designer

	Editing the Properties of Objects
	Previewing Your GUI
	Connecting Signals and Slots in Qt Designer
	Creating Python Code from Qt Designer
	Generating Code Using pyuic6
	Creating a New Script to Build a GUI

	Extra Tips for Using Qt Designer
	Setting Up Main Windows and Menus
	Adding Menus and Submenus in Qt Designer
	Adding Toolbars in Qt Designer
	Adding Actions in Qt Designer

	Displaying Images in Qt Designer
	Adding Style Sheets in Qt Designer

	Summary

	Chapter 9: Working with the Clipboard
	The QClipboard Class
	Explanation for Using QClipboard

	Project 9.1 – Sticky Notes GUI
	Explanation for the Sticky Notes GUI

	Summary

	Chapter 10: Presenting Data in PyQt
	Quickly Handling Data in PyQt
	The QListWidget Class
	Explanation for Using QListWidget

	Drag and Drop in PyQt
	Explanation for Drag and Drop

	The QTableWidget Class
	Explanation for Using QTableWidget
	Creating Context Menus
	Using Built-in QTableWidget Methods to Edit Data

	The QTreeWidget Class
	Explanation for Using QTreeWidget

	Summary

	Chapter 11: Graphics and Animation in PyQt
	Introduction to the QPainter Class
	Explanation for Using the QPainter Class
	The paintEvent() Event Handler
	The QColor, QPen, and QBrush Classes
	Drawing Points and Lines
	Drawing Text
	Drawing Two-Dimensional Shapes
	Drawing Gradients

	Project 11.1 – Painter GUI
	Explanation for the Painter GUI
	Creating the Canvas Class
	Handling Mouse Movement Events

	Creating the Painter GUI’s MainWindow Class
	Creating Tool Tips for Widgets

	Animating Scenes with QPropertyAnimation
	Explanation for Animating Scenes
	Introduction to Animating Widgets
	Explanation for Animating Widgets

	Summary

	Chapter 12: Creating Custom Widgets
	Project 12.1 – RGB Slider Custom Widget
	PyQt’s Image Handling Classes
	The QSlider Widget
	Explanation for the RGB Slider Widget
	Updating the Sliders and Spin Boxes
	Updating the Colors
	Adding Methods to a Custom Widget

	RGB Slider Demo
	Explanation for the RGB Slider Demo

	Summary

	Chapter 13: Working with Qt Quick
	Outlining QtQuick and QML
	Elements in QtQuick
	Introduction to the QML Language and Syntax
	Explanation for QML Language and Syntax
	Defining Properties of an Element
	The Coordinate System

	Building and Running QML Components
	Creating and Loading QML Components
	Explanation for Creating QML Components
	Positioning Elements with Anchors
	Adding Images in QtQuick

	Explanation for Loading QML Components

	Creating Reusable Components
	Explanation for Creating Custom Components
	Making an Element Interactive with Mouse Handling

	Layout Handling in QML
	Using Positioners to Position Elements
	Explanation for Using Column and Grid Positioners

	Building and Loading QML Windows
	QtQuick Controls
	Explanation for Creating QML Windows
	Creating a Menu Bar
	Signals and Signal Handlers
	Using FileDialog to Open Files

	Explanation for Loading QML Windows

	Using Transformations to Animate Objects
	Explanation for Simple Transformations
	Explanation for Using Transformations to Animate Objects

	Summary

	Chapter 14: Introduction to Handling Databases
	Thinking About Data
	Introduction to Model/View Programming
	The Components of the Model/View Architecture
	PyQt’s Model/View Classes
	Explanation for Introduction to Model/View
	Setting Up the Model, View, and Selection Modes
	Working with CSV Files

	Working with SQL Databases in PyQt
	What Is SQL?
	Working with Database Management Systems
	Getting Familiar with SQL Commands

	Project 14.1 – Account Management GUI
	Explanation for Working with the QtSql Module
	Creating a Connection to a Database
	Building a Dataset with QSqlQuery
	Visualizing SQL Data Using SQLite

	Explanation for Querying a Database with QSqlQuery
	Working with the QSqlTableModel Class
	Explanation for Working with QSqlTableModel

	Working with the QSqlRelationalTableModel Class
	Explanation for Working with QSqlRelationalTableModel
	Adding Delegates to Edit Relational Data

	Explanation for the Account Management GUI

	Summary

	Chapter 15: Managing Threads
	Introduction to Threading
	Threading in PyQt
	Methods for Processing Long Events in PyQt

	Project 15.1 – File Renaming GUI
	The QProgressBar Widget
	Explanation for File Renaming GUI

	Summary

	Chapter 16: Extra Projects
	Project 16.1 – Directory Viewer GUI
	Explanation for the Directory Viewer GUI

	Project 16.2 – Camera GUI
	Explanation for the Camera GUI

	Project 16.3 – Simple Clock GUI
	Explanation for the Clock GUI

	Project 16.4 – Calendar GUI
	Explanation for the Calendar GUI

	Project 16.5 – Hangman GUI
	Explanation for the Hangman GUI
	Creating the Drawing Class
	Creating the Main Window Class

	Project 16.6 – Web Browser GUI
	Explanation for Web Browser GUI
	Creating Tabs for the Web Browser
	Creating the Web View
	Adding a QProgressBar to the Status Bar

	Project 16.7 – Tri-state QComboBox
	Explanation for the Tri-state QComboBox
	Summary

	Appendix: Reference Guide for PyQt6
	Selected PyQt6 Modules
	Selected PyQt Classes
	Classes for Building a GUI Window
	QApplication
	QWidget
	Event Handling
	QMainWindow
	QDialog

	QPainter
	Layout Managers
	Button Widgets
	Input Widgets
	Combo Boxes
	QLineEdit
	Text Editing Widgets
	Spin Box Widgets
	Slider Widgets

	Display Widgets
	QLabel
	QProgressBar
	QGraphicsView
	QLCDNumber

	Item Views
	Container Widgets
	Containers with Frames
	QScrollArea
	QMdiArea

	QtQuick and QML
	Qt Style Sheets
	Qt Namespace
	Summary

	Index

